

Nuclear Research Reactors and Noble Gas Monitoring

WOSMIP Remote April 2020 I. Hoffman and K. Ungar

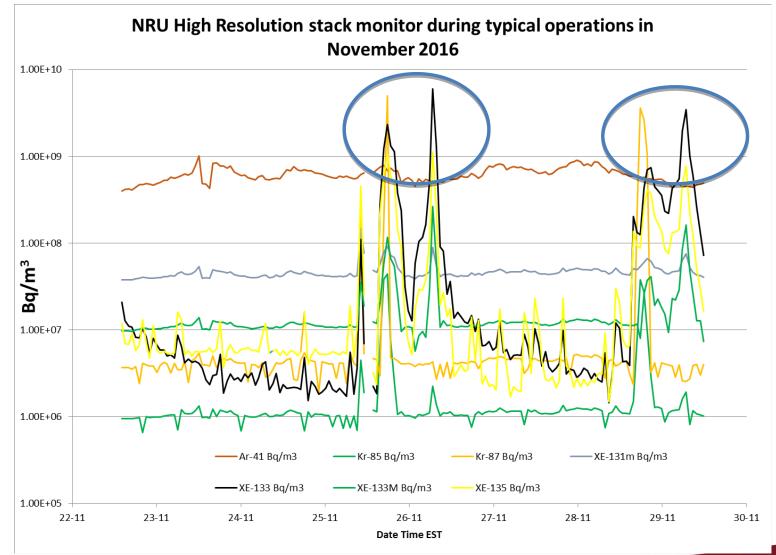
YOUR HEALTH AND SAFETY ... OUR PRIORITY.

Introduction Nuclear Research Reactors (NRR) Noble Gas Monitoring Conclusion

Introduction

• The CTBT community is aware of many facilities that impact noble gas monitoring. These facilities generate a noble gas background:

- Medical Isotope Production (MIP)


- Nuclear Research Reactors (NRR)
- Nuclear Power Plants (NPP)
- Hospitals with nuclear medicine facilities
- These emissions must be characterized so that they can be distinguished from Nuclear Weapons Tests.

Nuclear Research Reactors (NRR)

• Worldwide assessment of NRR emissions estimated 3.5x 10^{12} Bq per year (Single MIP can be up to 10^{15} Bq/year)

- Emission measurements and regional monitoring show, that at least in the case of the now decommissioned Canadian NRU, NRR releases can be considerably larger
 - ¹³³Xe emissions from NRR over short time periods can be commensurate with releases from MIP...

A week in the life of NRU

NRU Emission Estimate

An estimate of ¹³³Xe released

- ~7 hr in excess of 10^9 Bq/m³
- ~55200 s x 15 m³/s x 10⁹ Bq/m³ ~ 4 x 10¹⁴ Bq
- Or about 2 x 10^{16} Bq annually for continuous operation

BIG

Conclusions

- While MIP is the predominant source of radioxenon, other sources are important at least episodically with current measurement capabilities
- Next generation noble gas monitoring equipment will detect these other sources more frequently and characterization and understanding of them will be increasingly important.
- Effective CTBT monitoring requires an understanding of both MIP sources and others source such as NRR and others