

The Case for Silicon in Beta-Gamma Radioxenon Detectors

Michael Foxe

Pacific Northwest National Laboratory

April 28, 2020

Workshop on Signatures of Man-Made Isotope Production (WOSMIP)

PNNL is operated by Battelle for the U.S. Department of Energy

PNNL-SA-153019

Silicon PIN Detectors

- Semiconductor based-detector
 - Charged particles traversing through Si
 ✓ High Z material fully absorbed particle
 - Create electron hole pairs
 - ✓ Typical ionization energy 1-5 eV
- Available since the 1960 but costly
 - Use in HEP, cameras, satellites, computers
- This project is developing the nextgeneration beta detector
 - Increased resolution ~10%
 - ✓ Plastic scintillator is $\sim 30\%$
 - \checkmark Improved isotope discrimination
 - \checkmark Better detection limits
 - Decreased memory effect
 - \checkmark Faster time between measurements
 - ✓ Improve accuracy of measurements

Beta-Gamma Detection with a Si-PIN Beta Cell

- Intrinsic properties of silicon
 - Lower memory effect
 - Higher energy resolution
 - Better detection limits
 - Improved isotopic discrimination
- Two commercially available detectors for current and future radioxenon systems
 - Canberra PIPSBox
 - Lares Ltd-developed
- PNNL version to fit in Xenon International NaI detectors

Canberra PIPSBox

Lares Ltd

PNNL SiPIN

Initial Silicon Calibration

Improved Energy Resolution – Xe-133m

Silicon

Plastic

Summary and Potential Impact

- PNNL long box design was best for Xenon International configuration
 - Eliminates memory effect
 - \checkmark Housing design optimization
 - Commercially available parts
 - Second design iteration is underway
 - ✓ Improved robustness and sensitivity
- Improved isotopic discrimination would allow for sources of radioxenon to be better identified (e.g. reactor versus medical isotope production versus nuclear explosion).
 - Improved energy resolution has demonstrated the ability to better distinguish the metastable conversion electron peaks
 - Still a need to experimentally establish the sensitivity comparison for a variety of activity concentrations

Thank you

