

Australian Nuclear Medicine Production

ANM operating experience

WOSMIP Remote II, May 2021

Emmy Hoffmann, Stuart Brink

Science. Ingenuity. Sustainability.

Australian Nuclear Medicine Facility

LEU / LEU Mo-99m Supply chain

Challenging supply chain

ANSTO Mo-99 Production Update

- > ANM facility: Approved for single batches of 12 target plates
- > Hot commissioning from Sep 2018 (Bld 54 shut down)
- 2019 operational issues affected Mo-99 supply & led to loss of customer confidence (OPAL shutdowns, ANM jammed gate valve)
- > Domestic supply of Tc Generators maintained throughout COVID
- > Aug 2020 resumed international supply of bulk Mo-99
- Mar-May2021 OPAL extended shutdown
- Production currently 3 to 4 runs pw some are combined batches !
 - > after 6 hours, dissolver opened & 12 more plates added (24 plates total)
- Leading to slightly higher releases

Original ANM design included provision for:

 Duplicate production line (hot cells)
Second bank of 30 carbon columns for xenon abatement
Deferred construction

Second Dissolution Cell installed

- Ventilation exhaust currently going through original bank of carbon columns
- May affect performance of the abatement system
- Project to separate the ventilation for a true 'duty standby' situation

Future Plans

- Gradually increase Mo-99 production to 5 & 6 runs/wk
- Bld 54 facility mothballed, may be re-purposed
- Install 2nd bank of carbon columns to serve DCell2 est. cost \$1.6M AUD
- OPAL scheduled for 10 year shutdown in FY24 (ANSTO will need to import Mo-99 for 6 months)

Active Ventilation System

ANM - General Ventilation Configuration

Vacuum Tanks

ANSTO

Carbon Columns

Activated carbon is the most common adsorbent used for iodine and xenon abatement due to its reasonable cost and effectiveness

Carbon Column manufacture

Figure 9 - Inspection of Carbon Column Post Testing

Figure 8 - Removal of Carbon from Carbon Column post testing

Carbon Column installation – now active !

Linking Emissions to Production

Each run has its own characteristics depending on operational needs:

- working around OPAL monthly shutdown schedule target irradiation times vary from 3-12 days
- 1.5 2 days from target dissolution to final product
- LEU target plates 2 suppliers (CERCA, CNEA)
- Process yield (% product recovery) affects waste/off-gassing
- Vacuum buffer tanks
- Double runs !

How do ANM emissions compare with Building 54?

ANM initial commissioning runs ➤ Average Xe-133 emissions lower by ~ x13

Placeholder for current data

ANM Performance

Total Runs per Year

Ave Curie Produced per Run

Series 1 ANM carbon columns ~ 12 hourly switch

Series 2 ANM Start-up after 6 weeks off line

Xe-133m,Xe-135,Xe-133,Xe-131m Emissions

AUS02 2021-04-26 - 2021-05-05

Series 3 Xe-135, Xe-133m decay

Xe-133m,Xe-135,Xe-133,Xe-131m Emissions

4 isotope plot (same data as series 3)

3 isotope plot (same data as series 3)

Iodine breakthrough

ANSTO

Thank you! Questions?

