

Administration, or Pacific Northwest National Laboratory.

Pacific Northwest Impact of environmental backgrounds on atmospheric monitoring of nuclear explosions **Selected results**

June 8, 2021

Miley, Eslinger, Sarathi

PNNL-SA-162425

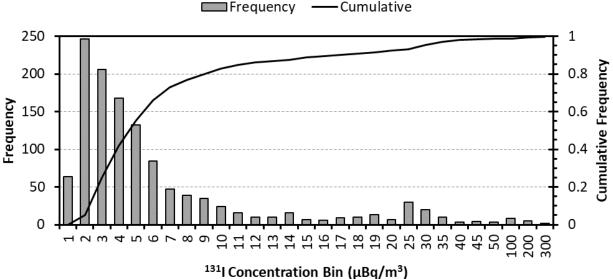
PNNL is operated by Battelle for the U.S. Department of Energy

BLUF/Outline/Summary

- Backgrounds are of two types
 - 1. Radon & progeny impact MDC
 - Pb-212 causes aerosol MDC to vary
 - Xenon MDC less affected
 - 2. Nuclear activities can emit the exact NEM signature we are interested in
 - We define an ANOMALY LEVEL of a 95th percentile to estimate an action threshold
 - Same as MDC for places where background is low.
 - Aerosol I-131 (few stations can even have a defined anomaly level)
 - Xenon Xe-133

- Source Term motivation
 - For xenon, use Ringbom 2009 paper ✓ (1% release)
 - For iodine, use release fraction 1e-5
 - ✓ Motivated by Ely et al
- Conclusions
 - Xenon bkg is global and major \checkmark Some regions worse than others
 - Iodine bkg is regional and minor
- New: estimate number of reporting stations and samples
- New: identify potential background study locations

Background

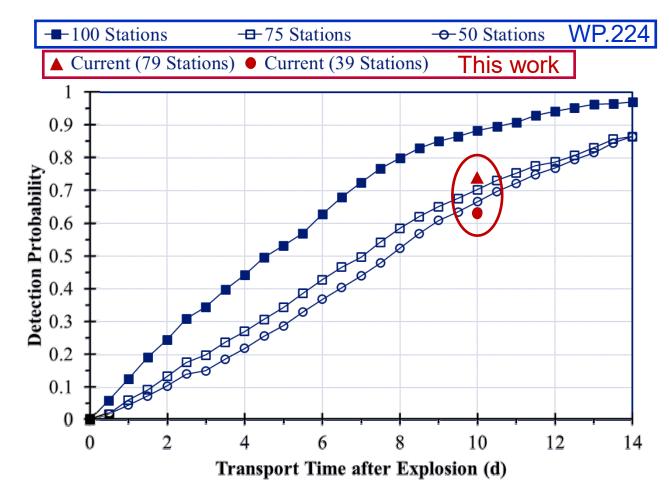

Tabulated from DOE/NV-317

 WP.224 RN design based 	on
--	----

- ¹⁴⁰Ba atmospheric 1 kt ✓ 2×10¹⁵ Bq of ¹⁴⁰Ba
- ¹³³Xe various scenarios
 - ✓ 10¹⁵ Bq evasive ATM
 - ✓ 10¹⁵ Bq UWT
 - ✓ 10^{14} Bq over 12 hrs after UGT
 - <u>A 17% leak!</u>
- IRNWG 1998
 - 10% leak at 3 days = 10¹⁵ Bq ¹³³Xe
- For aerosols, volatile ¹³¹I is far more likely to escape
- Volatile ¹³¹ has had 1234 detects in the IMS over 9y

Noble Gas				Volatile above 600° C				Refractory			
			Cum.				Cum.				Cum.
Isotope	Number	$T_{1/2}$	Yield	Isotope	Number	$T_{1/2}$	Yield	Isotope	Number	$T_{1/2}$	Yield
131mXe	10	11.8 d	.0451	131 I	131	8.03 d	3.22	⁹⁹ Mo	3	65.9 h	5.94
(¹³³ Xe	310	5.25 d	6.72	132I	13	2.30 h	4.67	99m Tc		6.01 h	5.23
133m Xc	169	2.20 d	0.192	¹³³ I	109	20.8 h	6.72	¹³⁹ Da	6	82.9 m	6.34
¹³⁵ Xe	271	9.14 h	6.60	¹³⁴ I	6	52.5 m	7.64	¹⁴⁰ Ba	19	12.8 d	5.98
				¹³⁵ I	88	6.58 h	6.30	¹⁴⁰ La	17	1.68 d	5.98
				¹³² Te	13	3.20 d	4.66				
				¹³⁷ Cs	10	30.1 y	6.22				
				¹³⁸ Cs	29	32.5 m	6.65				
				¹³⁹ Cs	1	9.27 m	6.32				

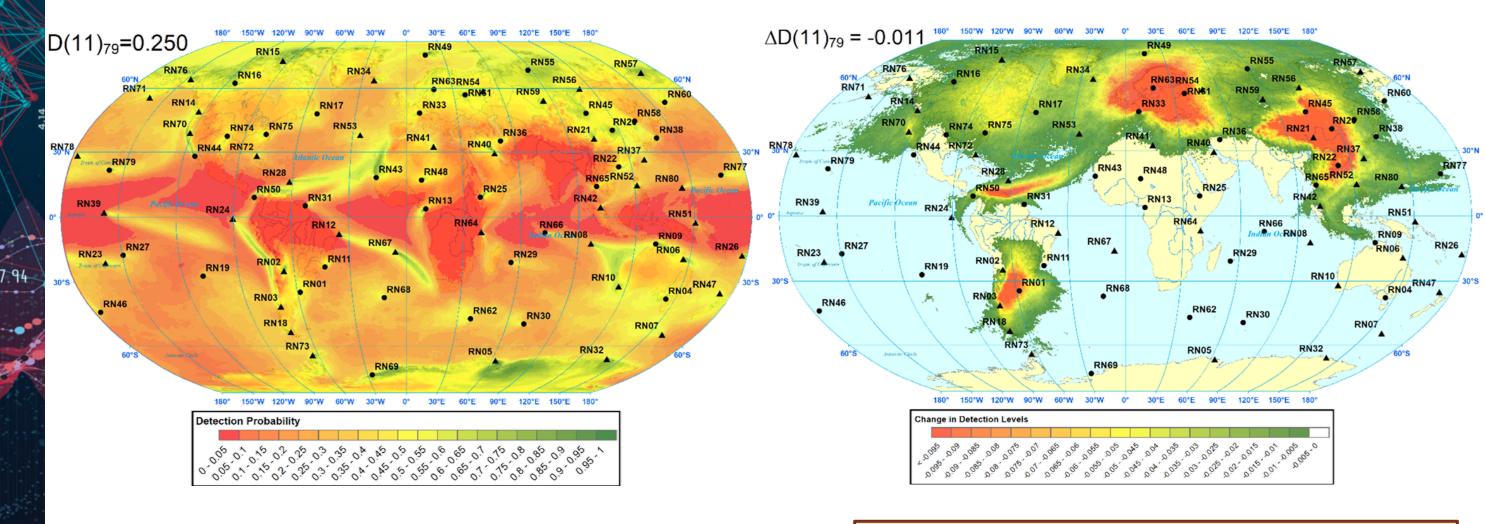
¹³¹I: 45 IMS stations over 9 years



Historical: WP.224 nailed the aerosol performance

- D(15)₇₉ to match WP.224
- Our 79/39 calculations with real IMS MDC's bracket their 75/50 calculations
- Why such good agreement?
 - They got the MDC's right

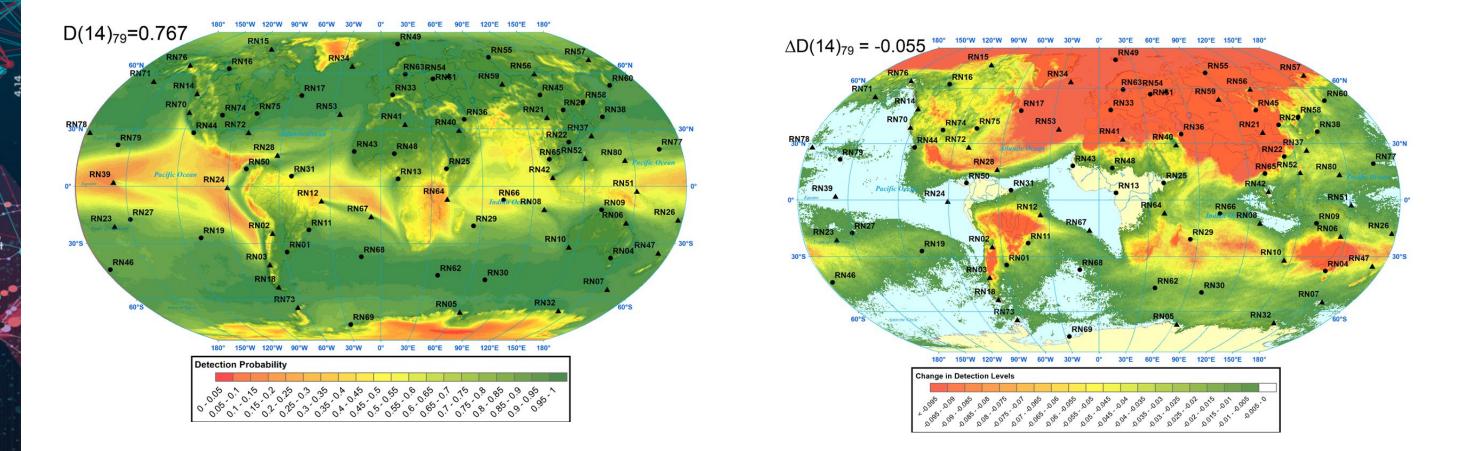
 ✓ 10 µBq/m3 for ¹⁴⁰Ba WP.224
 ✓ 9.92 µBq/m3 for ¹⁴⁰Ba avg IMS
 - There were global aerosol measurements in the literature
 - No such record existed for ¹³³Xe



Notation used here

- Detection metric: $D(M)_{N}$
 - probability of a signal reaching or exceeding Max(MDC, 95th percentile)
 - For a signal magnitude M (order of magnitude of becquerel released)
 - For a network with N stations
- D(11)₇₉
 - Detection probability, map or single value
 - for 10¹¹ Bq released anywhere on Earth
 - in a 79 station network
- ∆D(11)₇₉
 - The change brought on due to backgrounds in the case above
 - Map or single value
- We are also working on a *location metric*, and it will depend on the number of stations and samples involved in a detection

Detection prob: 79-station for a 10¹¹ Bq ¹³¹I: $D(11)_{79}$ and background-induced $\Delta D(11)_{79}$



Pacific

Northwest

This would be a *smaller* effect at higher signal levels.

Detection prob: 79-station for a 10¹⁴ Bq ¹³³Xe: D(13)₇₉ and background-induced ∆D(13)₇₉

Xenon

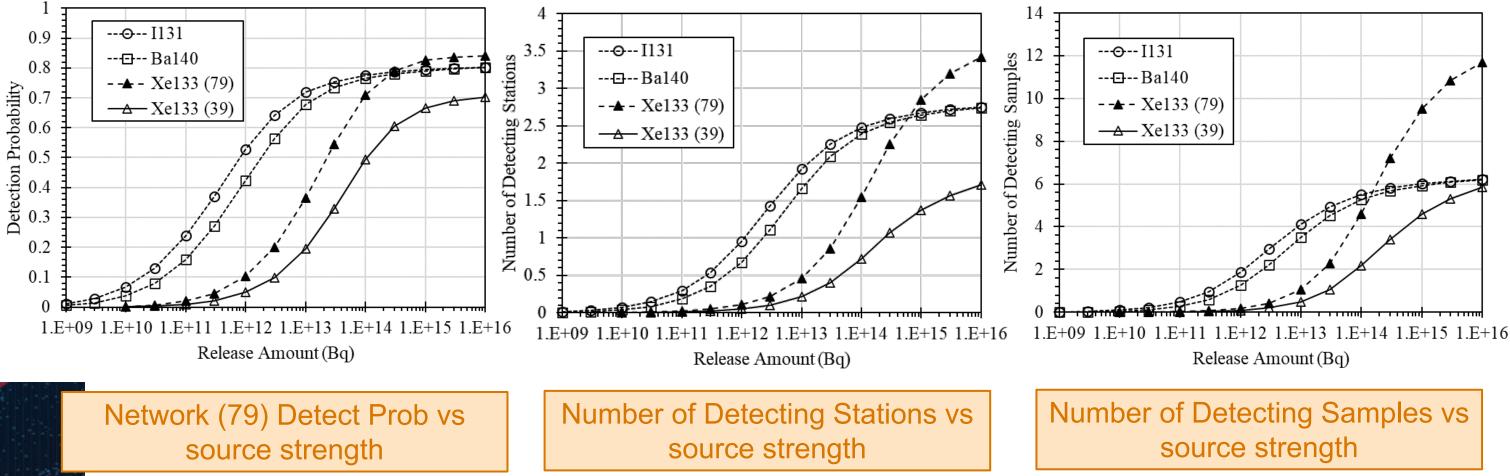
Pacific

Northwest

Excellent coverage, but major impact to large regions.

Stations with Most Background Impact

Aerosol	
	o Eth


Station	$\frac{MDC^{a}}{\mu Bq/m^{3}}$	Detecting Samples	Average µBq/m ³	95 th Percentile µBq/m ³	_	Station	System MDC mBq/m ³	Median mBq/m ³	95 th Percentile mBq/m ³
RN61	2.34	449	9.12	29.85	_	RN61	0.5	0.531	50.1
RN22	5.19	224	10.2	23.35		RN54	0.5	0.446	44.7
RN21	5.42	23	11.1	20.21		RN33	0.15	0.221	36.7
RN20	4.81	145	6.36	16.92		RN57	0.5	4.850	20.7
RN01	3.78	80	4.97	14.92		RN21	0.15	0.464	19.3
RN58	4.11	14	3.43	8.07		RN59	0.5	0.081	9.73
RN52	1.98	79	2.22	4.21		RN04	0.2	0.000	9.53
RN54	2.00	76	1.93	4.18		RN63	0.2	0.182	8.26
RN50	1.54	41	1.76	3.68		RN49	0.2	0.001	7.25
RN59	3.12	12	1.49	2.99		RN20	0.15	0.097	7.23
11137	J.12		1.7/			RN01	0.5	0.166	7.07
					_	RN55	0.5	0.003	6.58

Xenon

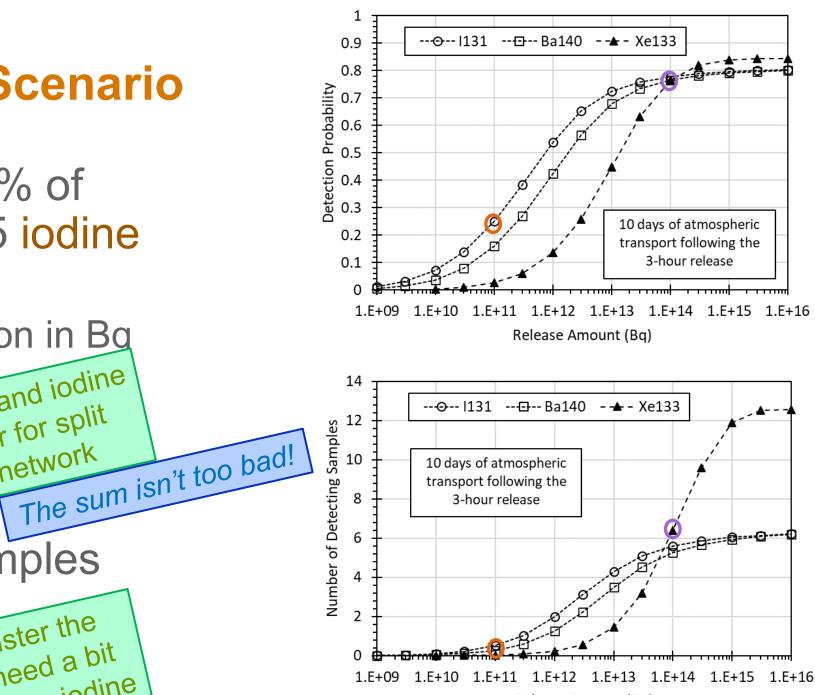
Network performance (79), Current Tech Aerosol = 24h, Xenon = 12h

Pacific

Northwest

Not bad, but...

Next Gen systems could improve this markedly!


Illustrative 79 Scenario

are similar for split

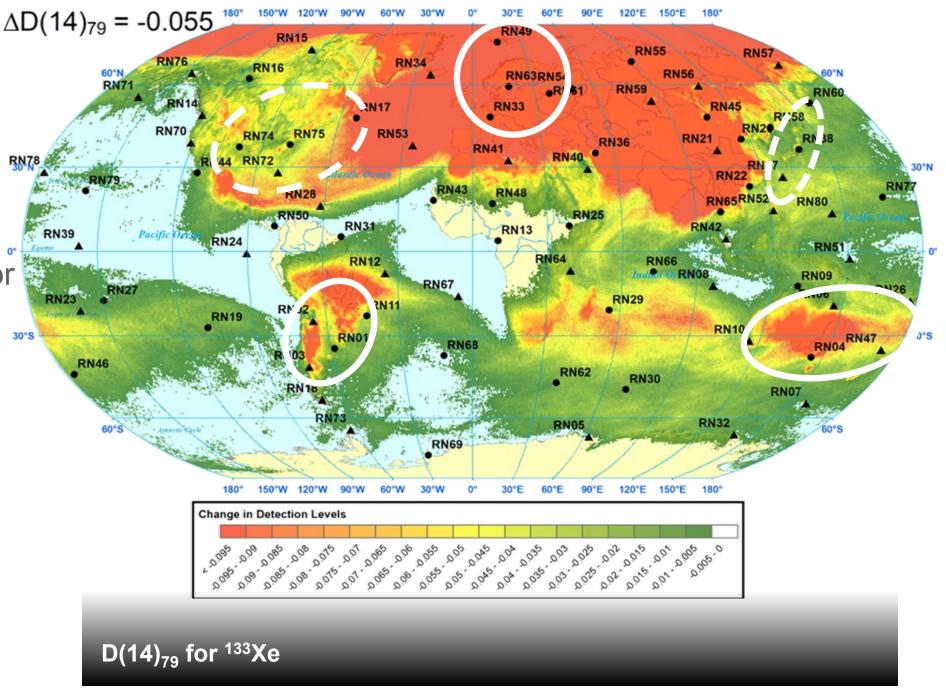
This helps bolster the

39 - 79 network

- Imagine a case where 1% of xenon escapes and 1e-5 iodine escapes...
 - 3 orders of mag separation in Bg BUT, xenon and iodine
- Detection prob
 - Xenon 78%
 - lodine 26%
- Number of detecting samples
 - Xenon 6.5
 - lodine 0.5 ?

case that we need a bit more sensitivity for iodine

Release Amount (Bq)

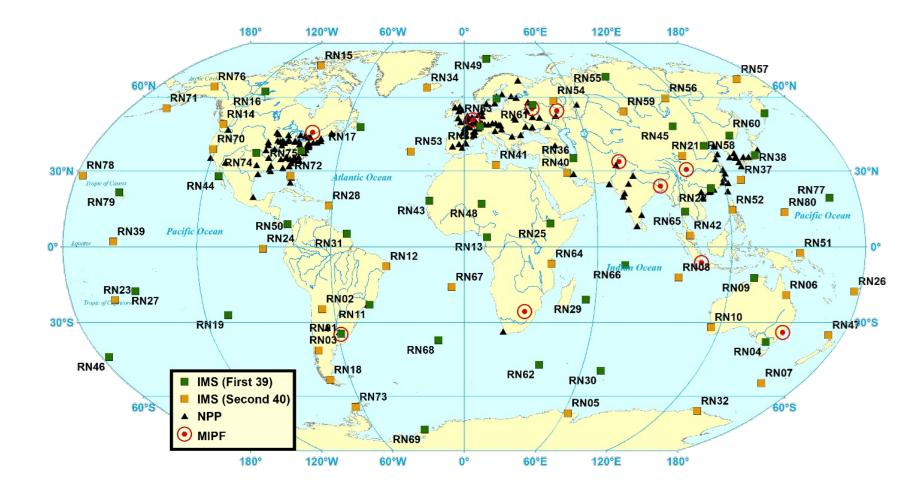

Next Steps: Confirm or Improve with Background Studies

- If background estimates could be made sufficiently accurate, the action level could be lowered substantially.
 - Additional measurements done at IMS stations that do not yet have a xenon system
 - Adding other measurements to constrain backgrounds
 - ✓ Local/regional monitoring data
 - ✓ Stack monitors at participating institutions
 - ✓ Temporary background campaigns
- Develop cross-signature support between aerosol and xenon measurements
 - Could add key confidence for hard-to-detect signals, lowering false positives
- All of the above:
 - Run temporary science experiments that include stack monitors, local/regional measurements, highly impacted stations, Xe and ¹³¹I, and IMS stations so far unmeasured

High Value Places for Background Study

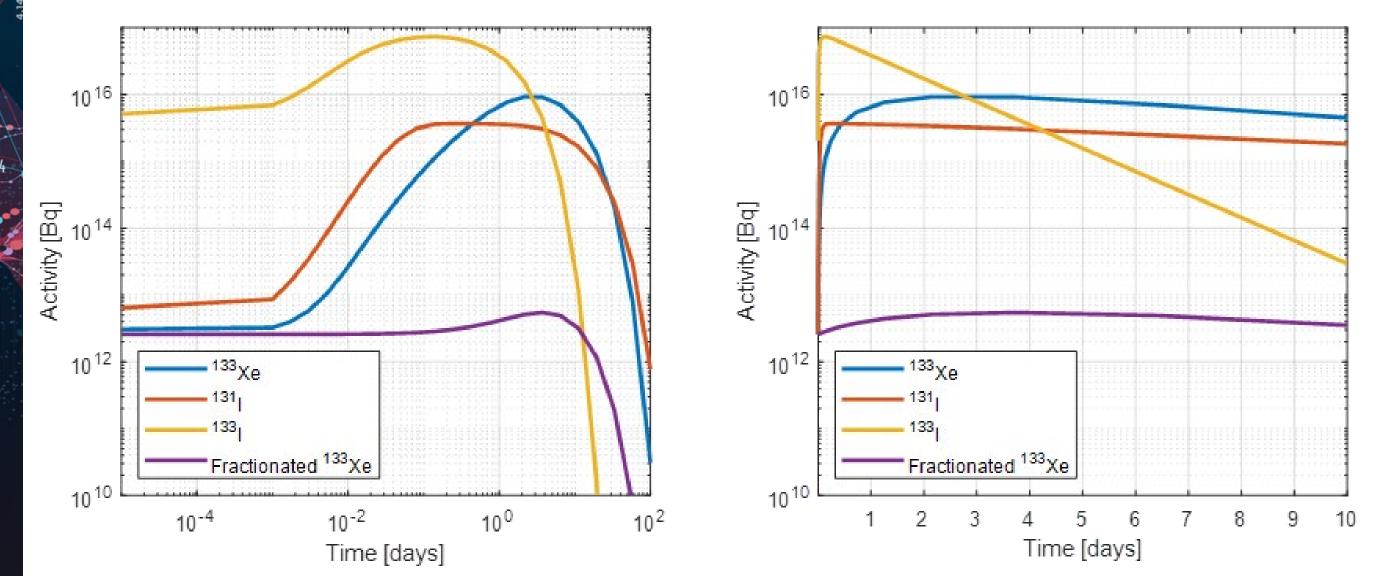
- Highest Impacted Stations for Both Xe and I
- 2nd 40 stations (triangles)
- Stack Monitors
 - Belgium
 - Australia
 - Near Future: US Niowave*
 - Near Future: Argentina
 - Future: Chile
 - Future: KJRR*

*New producer


7.94

Thank you

How we simulated Xe backgrounds


Extra: Xenon Growth and Decay

• The ingrowth of 133Xe is fed by 133I and parent isotopes

Pacific

Northwest

• If 133Xe is extracted/fractionated at T=0, it is 1000x smaller

