

The International Monitoring System

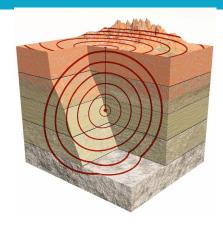
Nikolaus Hermanspahn, Richard Britton, Ashley Davies IMS Division, CTBTO

WOSMIP 2021

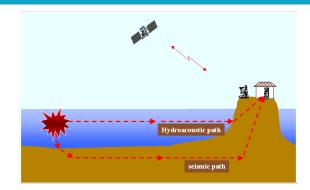
The CTBT

The CTBT bans all nuclear explosions on Earth whether for military or for peaceful purposes.

The International Monitoring System (IMS)

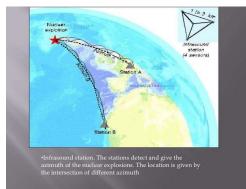

The International Monitoring System (IMS) consists of 321 monitoring stations and 16 laboratories.

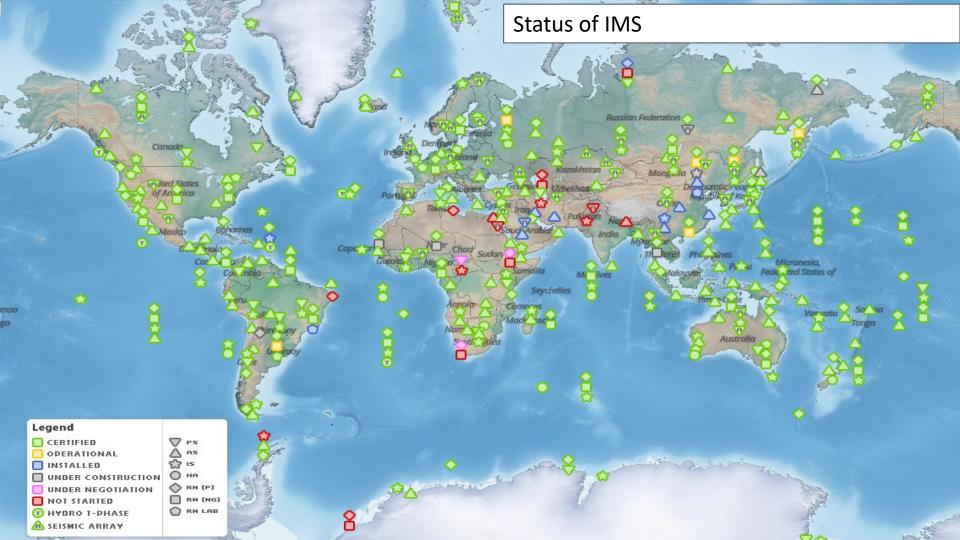
These 337 facilities monitor the planet for any sign of a nuclear explosion

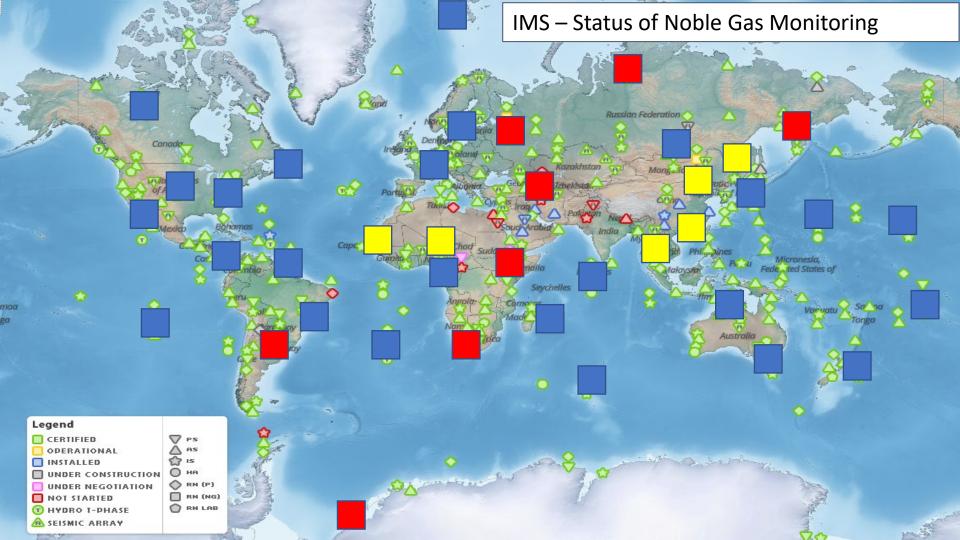


COMPREHENSIVE NUCLEAR-TEST-BAN TREATY ORGANIZATION

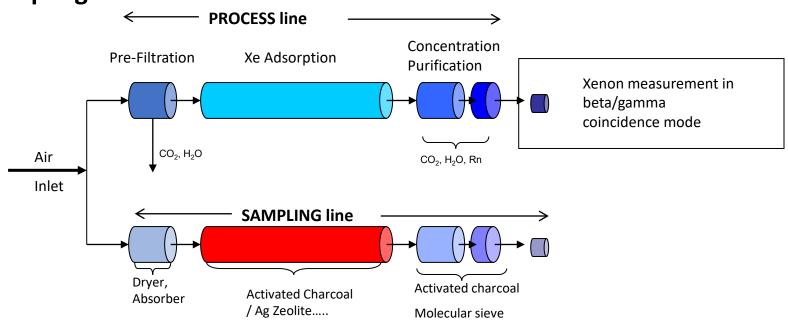
Monitoring Technologies


seismic




Hydro-acoustic

infrasound



Xenon processing schema

Basic sampling scheme

COMPREHENSIVE NUCLEAR-TEST-BAN TREATY ORGANIZATION

Xenon systems in IMS

Minimum requirements for Noble Gas Measurements CTBT/PC/II/1/Add.2

Characteristics	Minimum requirements
Air flow	0.4 m ³ h ⁻¹
Total volume of sample	10 m ³
Collection time	≤ 24 h
Measurement time	≤ 24 h
Time before reporting	≤ 48 h
Reporting frequency	Daily
Isotopes measured	^{131m} Xe, ^{133m} Xe, ¹³³ Xe, ¹³⁵ Xe
Measurement mode	beta - gamma coincidence or high resolution gamma spectrometry
Minimum Detectable Concentration	$1 \underline{\text{mBg/m}^3}$ for ^{133}Xe
State - of - Health	status data transmitted to IDC
Communication	two - way
Data availability	95%
Down time	≤ 7 consecutive days
	≤ 15 days annually

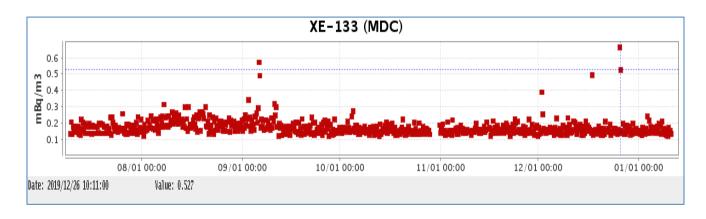
Testing and Development of next generation noble gas systems continues:

- SAUNA III has been accepted for use in the IMS.
- The SPALAX NG has completed full 1-year pre-deployment testing and final on-site test.
- MIKS (VNIIA) and XEInt (Teledyne Brown) are in pre-deployment testing phase.

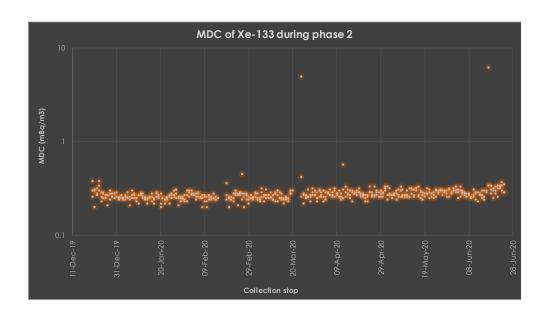
Xe-International (USA)

SPALAX-NG (France)

MIKS (Russian Federation)


SAUNA III (Sweden)

Current


- beta-gamma coincidence systems or gamma
- time resolution (12h, 24h)
- MDC < 1mBq/m³ for ¹³³Xe

New

- beta-gamma coincidence systems
- time resolution (6h, 8h, 12h)
- MDC < 1mBq/m³ for all nuclides
- Increase signal to noise ratio background
- Increased reliability and maintainability

SAUNA III:
6 month of test data
Xe-133 MDC
6 hour sampling

SPALAX NG:
6 month of test data
Xe-133 MDC
8 hour sampling

Next Generation Noble Gas System Rollout Plan

First generation noble gas systems status

SAUNA II

Production is completed, reaching obsolescence

SPALAX

Production is completed, reaching obsolescence

Rollout Plan* * Subject to budget constraints, PTS & manufacturer resources		
Phase	When	System Upgrade or installation
1	2021-2025	9 systems
2	2025-2030	15 systems
3	2030-2035	10 systems
4	2035-2040	6 systems

Next generation noble gas systems

SAUNA III

Acceptance completed, Ready for deployment

SPALAX NG

At final Acceptance stage.

XeInt

Acceptance testing stage.

MIKS

Acceptance testing stage.

The International Monitoring System is developing

- The number of deployed xenon systems will increase
- Installation of new generation systems will further increase sensitivity
- The sensitivity of IMS to xenon isotopes will continue to increase

BUT

- The radioxenon component of the IMS is a sparse network
- Radioxenon background acts to dilute & mask releases from Treaty violations
- Increased background will offset the sensitivity gains made

thank you