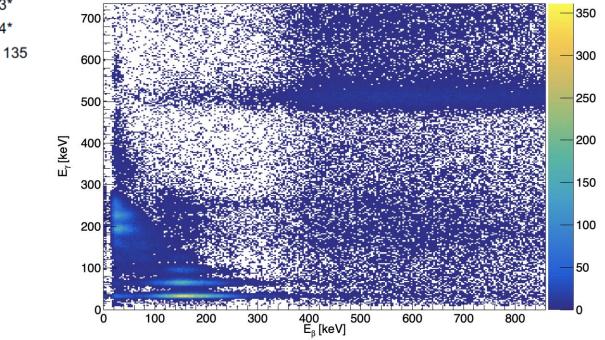


Production and Abatement of Non-Traditional Xenon Isotopes at a Spallation Neutron Source

Michael Foxe, Theodore Bowyer, Matthew Cooper, James Ely, Paul Eslinger, James Hayes, Michael Mayer, Justin McIntyre, Mark Panisko

PNNL is operated by Battelle for the U.S. Department of Energy

New Sources of Radioxenon


- Anthropogenic sources of radioxenon are expanding
 - Current Nuclear Reactors
 - Medical Isotope Production
 - Accelerator Facilities
 - ✓ E.g., Spallation Neutron Source
 - Advanced Nuclear Reactors
 - ✓ E.g., Molten Salt Reactors
- These new sources of radioxenon are also expanding the isotopes potentially detected at IMS stations

Xe	119	3.48E+02	8.43E-01
Xe	121	2.41E+03	1.27E+01
Xe	122	7.24E+04	8.44E+00
Xe	123	7.49E+03	2.46E+01
Xe	125	6.08E+04	9.80E+01
Xe	125*	5.70E+01	1.20E+01
Xe	127	3.15E+06	1.08E+02
Xe	127*	6.92E+01	2.12E+00
Xe	129*	7.68E+05	6.17E+00
Xe	131*	1.03E+06	4.43E+00
Xe	133	4 505 105	0 505 100
Xe	133*		

134*

Xe

Xe

2.34E-02 7.57E+00 8.29E+00 2.08E+01 9.65E+01 3.75E-09 1.08E+02 3.13E-08 6.16E+00 4.42E+00

Non-traditional Xenon Isotopes

- Many isotopes can be produced via neutron irradiation
 - ¹²⁷Xe
 - ¹²⁵Xe
 - ^{129m}Xe
- Neutron irradiation isotopes have been previously investigated and observed
- ¹²²Xe produced as medical isotope via proton or alpha bombardment
 - Not studied previously

Table 1. A listing of the all the stable xenon isotopes along with pertinent information for each. Clearly Xe-124 has the highest thermal neutron cross-section followed by Xe-129. The production of Xe-129m actually comes from a (n, 2n) reaction on Xe-130.

Xenon Isotope	% of Atmospheric Xenon	Thermal Neutron Cross Section (mb)	Product (% * Cross Section)	Metastable Component Half-Life
Xe-124	0.10	165,000	16,500	None
Xe-126	0.09	3,500	315	None
Xe-128	1.91	480	917	None
Xe-129	26.4	22,000	580,800	8.89 days
Xe-130	4.1	450	1,845	None
Xe-131	21.4	100	2,140	11.9 days
Xe-132	26.9	500	13,450	None
Xe-134	10.4	265	2,756	290 ms
Xe-136	8.9	260	2,314	None

Table 2. Data taken from Table of Radioactive Isotopes, ed
V. S. Shirley, 1986.

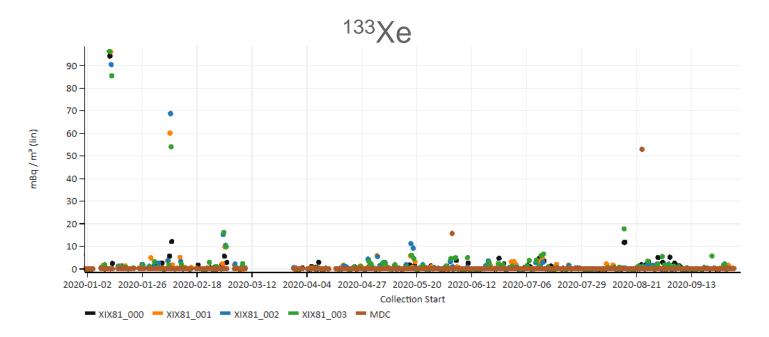
Isotope	Half-Life	Gamma-Rays (keV)	Beta (keV)	X-Rays (keV)	CE (keV)
Xe-122	20.1 hours	148.6 (3.1%) 350.1 (7.8%)	IB 530 (<1.0%)	28–33 (78.6%)	5-24 (71%)
Xe-125	16.9 hours	188.4 (54.9%) 243.4 (28.8%)	β+ 1467 (0.69%)	28–33 (100%)	5-80 (120%) 155 (6.4%)
Xe-127	36.4 days	172.1 (23.5%) 202.9 (68%) 375.0 (15.9%)	IB 457 (<1.0%)	28–33 (54.6%)	5-33 (69.3%) 90-125 (29.4%) 138-168 (84.2%)
Xe-129m	8.89 days	39.6 (7.5%) 196.6 (4.6%)		29–35 (126.5%)	5-40 (215%) 162 (63.3%) 191-197 (60%)

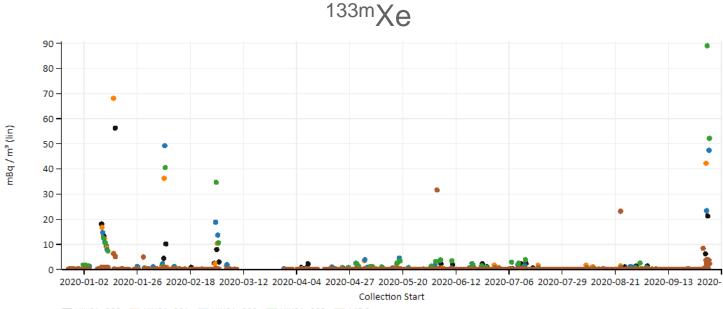
McIntyre, Justin I et al.. 2008. "Generation of Radioxenon Isotopes." In Proceedings of the 30th Seismic Research Review: Ground Based Nuclear Explosion Monitoring Technologies, 793-801.

lited by E. Browne, R. B. Firestone, and

Xenon International

- Next generation atmospheric radioxenon system
- Faster and more sensitive than current generation systems
 - ~2.5 cc of xenon in 6 hours
 - Compared to ~1 cc for SAUNA II in 12 hours
- MDCs
 - <0.15 mBq/SCM for ¹³³Xe, ^{131m}Xe, ^{133m}Xe
 - <0.5 mBq/SCM for ¹³⁵Xe
- Developed at PNNL
 - Transitioned to Teledyne Brown Engineering for production (Knoxville, TN)

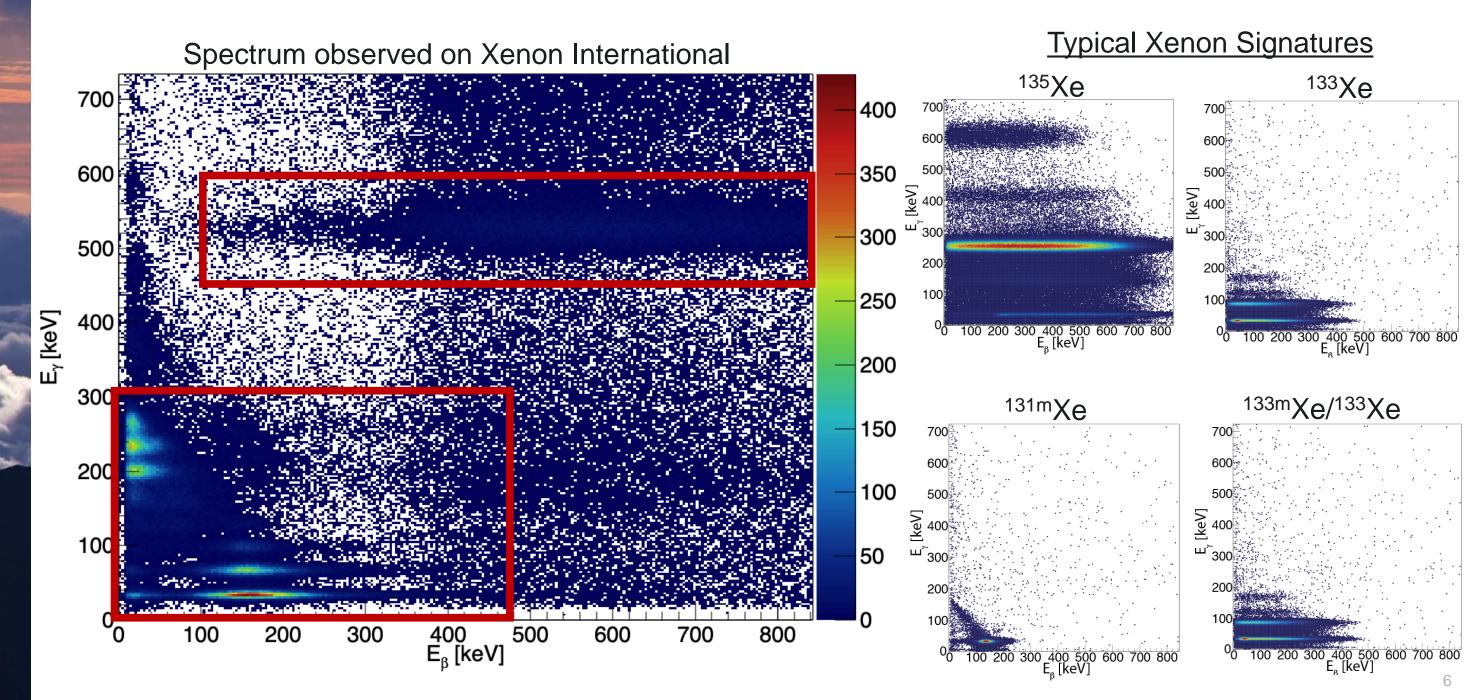

Puzzling Observations and Analyses - Measured at TBE in Knoxville, Tennessee


• At initial glance, everything seems to be going well.

Pacific

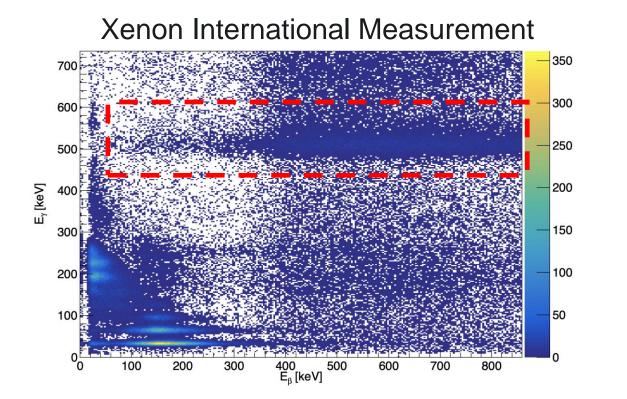
Northwest

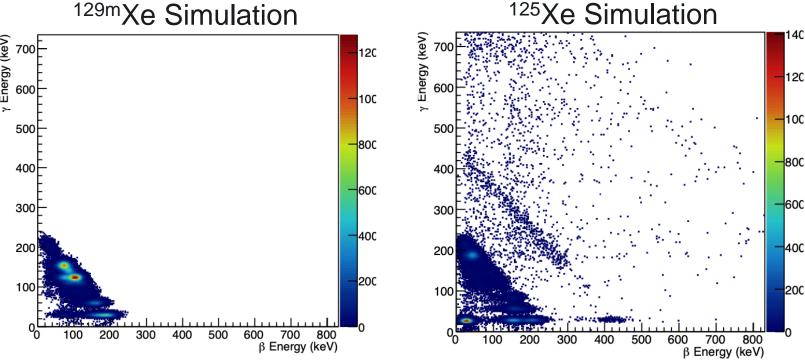
- ¹³³Xe no unusual levels observed for the area
- ¹³⁵Xe high but also not too unusual for the area
- ^{133m}Xe unusual to have higher concentration than ¹³³Xe
- ^{131m}Xe similar concentration to ^{133m}Xe
- Further investigation showed that the gamma-ray spectrum has unusual features.



Atypical Coincidence Signatures - Measured at TBE in Knoxville, Tennessee

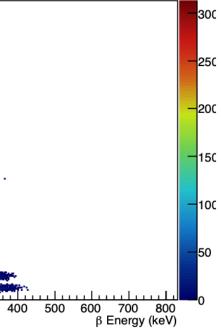
Pacific


Northwest



Monte Carlo Simulations

- Monte Carlo simulations performed to observe clean signatures and extract efficiencies
- Region at 511 keV in gamma energy not explained with these simulations

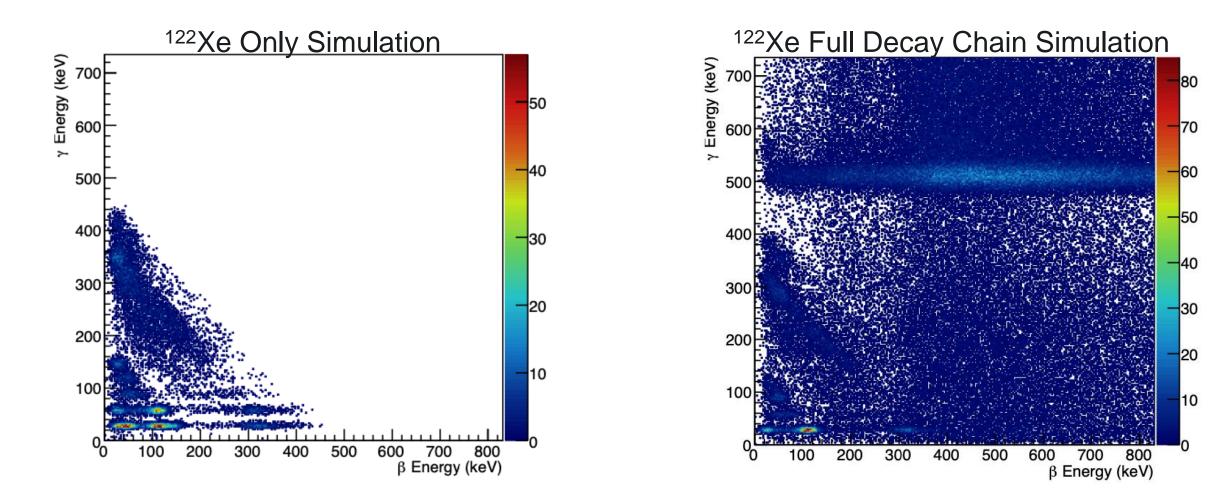


2007 €

600

g

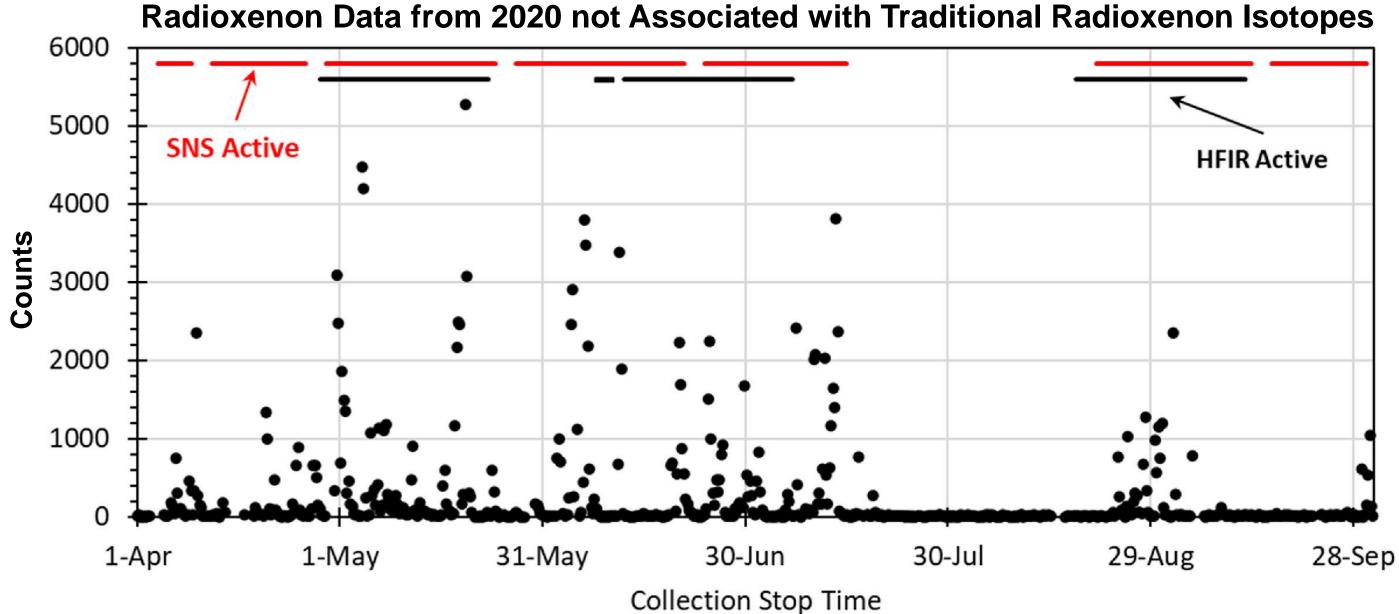
¹²⁷Xe Simulation



¹²⁵Xe Simulation

Missing Piece

- ¹²²Xe simulation alone did not seem to generate missing signature
 - Including daughter ¹²²I (T_{1/2}=3.63 minutes) produces missing signature
- Only possible source of production of ¹²²Xe is via spallation in the mercury target at Spallation Neutron Source (SNS)

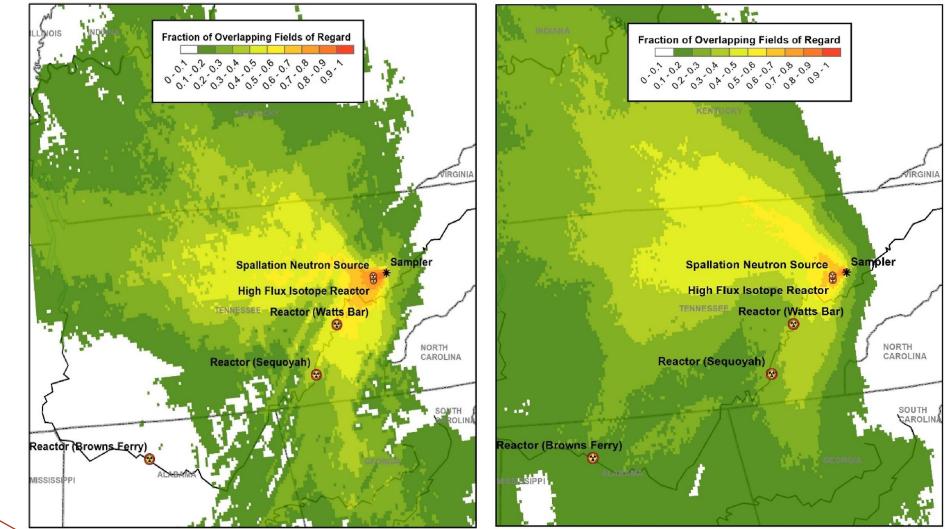


ature ^{ure} the mercury

Correlation with SNS and HFIR Operation

Pacific

Northwest


Eslinger, Paul W. et al. 2022. "Determining the Source of Unusual Xenon Isotopes in Samples." Journal of Environmental Radioactivity 247 (June): 106853. https://doi.org/10.1016/J.JENVRAD.2022.106853.

Atmospheric Transport Modeling (ATM)

- ATM suggests that likely release is from **HFIR or SNS**
- Wind patterns are not consistent with release from the nuclear power plants
- Production mechanism suggests
 - SNS only
 - SNS and HFIR
- Publication on ATM

Eslinger, Paul W. et al. 2022. "Determining the Source of Unusual Xenon Isotopes in Samples." Journal of Environmental Radioactivity 247 (June): 106853. https://doi.org/10.1016/J.JENVRAD.2022.106853.

How is the Non-Traditional Radioxenon **Produced**?

- Neutron bombardment of a liquid mercury target
 - Trace amounts of uranium within the target
 - Irradiation of natural xenon from air
- Proton bombardment producing ¹²²Xe

xenon isotopes of interest					
Nuclide	Produc	Ratio			
	(/cm3/s	at 1 MW)			
	spallation	equilibrium	(equ./spal.)		
Kr-77	1.117E+07	1.141E+07	1.02		
Kr-79	2.120E+07	3.523E+07	1.66		
Kr-85m	7.664E+06	2.133E+07	2.78		
Kr-87	6.782E+06	1.270E+07	1.87		
Kr-88	6.453E+06	1.053E+07	1.63		
Xe-121	2.721E+06	3.291E+06	1.21		
Xe-122	4.393E+06	7.008E+06	1.60		
Xe-123	3.553E+06	9.080E+06	2.56		
Xe-125	2.527E+06	1.752E+07	6.93		
Xe-127	1.531E+06	2.508E+07	16.38		

TABLE		-		krypton and
	xenon	isotopes	of interest	

Nuclide		Half-life
		(s)
Xe	119	3.48E+02
Xe	121	2.41E+03
Xe	122	7.24E+04
Xe	123	7.49E+03
Xe	125	6.08E+04
Xe	125*	5.70E+01
Xe	127	3.15E+06
Xe	127*	6.92E+01
Xe	129*	7.68E+05
Xe	131*	1.03E+06
Xe	133	4.53E+05
Xe	133*	1.89E+05
Xe	134*	2.90E-01
Xe	135	3.29E+04

DeVore, Joe R, Lu, Wei, and Schwahn, Scott O. 2013. "NOBLE GAS PRODUCTION FROM MERCURY SPALLATION AT SNS". United States

Activity (Ci) shutdown year 40

Decay time Down 3.00E+01 m

8.43E-01 1.27E+01 8.44E+00 2.46E+01 9.80E+01 1.20E+01 1.08E+02 2.12E+00 6.17E+00 4.43E+00 8.56E+00 4.44E-01 3.66E-02 3.00E+00

2.34E-02 7.57E+00 8.29E+00 2.08E+01 9.65E+01 3.75E-09 1.08E+02 3.13E-08 6.16E+00 4.42E+00 8.55E+00 4.42E-01 6.33E-07 2.89E+00

How is the radioxenon abated?

- How much gets out of the target?
 - Target material: liquid mercury
 - Other sources use different target materials

TABLE II. Comparison of noble gas solubility in mercury					
Species	Solubility H		Predicted		
	(m.f.)*	(atm/m.f.)*	(m.f.)		
Argon	5.89E-8	6.3E8	2.45E-11		
Krypton	5.59E-9	3.21E9	2.75E-10		
Xenon	9.59E-11	1.18E11	3.82E-11		

*reproduced from reference (3)

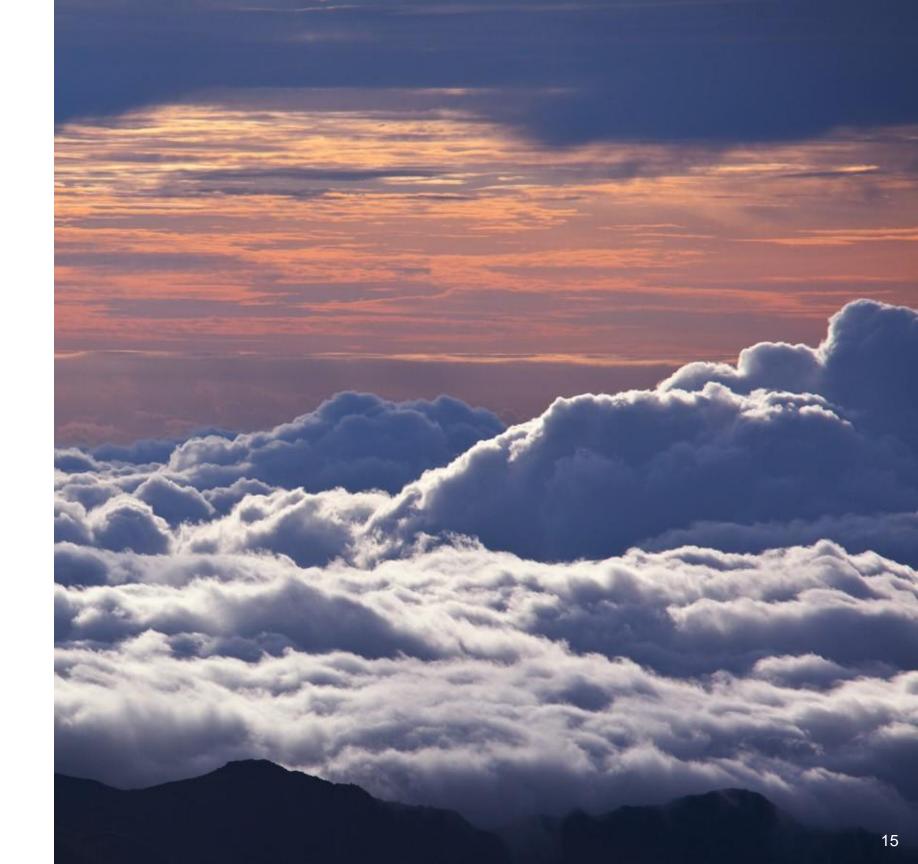
- What traps do the gases go through before being released?
 - Helium off gases and purge for studying the production rates
 - HEPA filters for particulate
 - Cryogenic sulfur-impregnated charcoal absorber
- How long is the xenon contained before being released?
 - Initial retention time of approximately 350 minutes (1/3 ¹²²Xe half-life)

DeVore, Joe R, Lu, Wei, and Schwahn, Scott O. 2013. "NOBLE GAS PRODUCTION FROM MERCURY SPALLATION AT SNS". United States

12

Other possible sources around the world

- Neutron Activation Sources
 - Accelerators
 - Reactor cover gas
 - \checkmark Cover gas hold-up times impact the short-lived isotope interferences
- Spallation sources
 - SNS (this presentation)
 - Los Alamos Neutron Science Center
 - ISIS neutron source in the UK
 - Japan Proton Accelerator Research Complex (J-PARC) in Japan
 - European Spallation Source in Sweden
 - China Spallation Neutron Source
- Are there other commercial sources of these isotopes?



Conclusion and Outlook

- Newly observed isotopes seen near HFIR and SNS suggest new source of interfering xenon background (non-traditional production mechanisms)
- New isotopes interfere with all traditional ROIs used for activity calculations
 - Algorithms will continue to calculate normally
 - Concentrations and ratios will not make sense
- Non-traditional xenon isotopes are produced through a series of mechanisms
 - Spallation on mercury targets
 - Air activation
 - Fission isotopes
- Even with wind predominantly in the other direction, they can still be detected at near-by stations
- These non-traditional isotopes may be produced at other facilities around the world

Thank you

