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Background Radioxenon is Highly Variable in Space and Time

RN stations

Potential background
Xenon sources (nuclear
power plants, research
reactors, and medical
Isotope facilities)
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Background Radioxenon is Highly Variable in Space and Time
2014Ju|01 -00

g*' Extracting nuclear test signals from the radio-
,"' xenon background is like finding a needle in a
haystack.

! “Xenon Weather”

Radionuclide Models and
Background algorithms
Sources

Nuclear

Test Signal

Advances in modeling and algorithms may
help find the needle.

Movie of Xe-133 released from 200 facilities on 2014 July 01 and tracked for
two weeks. Colors show near-surface logarithmic activity concentrations.
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Atmospheric Models Can Be Used to Estimate Background Xenon

Xenon Sources Atmospheric Models Xenon Signals
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Xenon emission rates at facilities are N
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typically not measured and can represent FI-EXPART ol Bttt seroliatey
(;1 large source of model uncertainty. / \ / \
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ldentifying Xenon Anomalies in Measurements

Xe-133 history at SEX63 - Long term - Interactive analysis
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ldentifying Xenon Anomalies in Measurements

Anomalies can occur in multiple dimensions e
One or more Xe isotopes
One or more IMS stations 110 - 0o
] 100 0.8
Quantile Scores % - z
. . . 0.7 »
Empirical and easy to compute in one /' e 06§
. . . . . Q 70 - o
d!mens!on, but challenging in higher 5 o . 05 2
dimensions § 50 - ® Level A (106) 04‘_:“
- - e 40 - Level B (571) ’ g
Outlier/Novelty Detection Algorithms 30 - omiae || O
Time series methods 20 - P
: : 10 - - 0.
Machine learning approaches . 0
Local Outlier Factor 0 1 2 3 4 5
Random Isolation Forest Activity concentration mBg/m3
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ldentifying Xenon Anomalies in Measurements

Anomalies can occur in multiple dimensions
One or more Xe isotopes
One or more IMS stations

Example of Identifying Xe-133
Signal Injections in January 2014

true positive false positive

Quantile Scores — e
Empirical and easy to compute in one / 375 0'847 0'066
d!mens!on, but challenging in higher 490  0.784 0.036
dimensions q95 0.72 0.017

Outlier/Novelty Detection Algorithms o osee o
Time series mfethods q98  0.657 0.008
Machine learning approaches 499  0.623 0.004

Local Outlier F_actor There is a tradeoff between true positives and
Random Isolation Forest false positives versus the quantile threshold.
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ldentifying Xenon Anomalies in Measurements
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ldentifying Xenon Anomalies in Measurements

Anomalies can occur in multiple dimensions

One or more Xe isotopes
One or more IMS stations

Quantile Scores
Empirical and easy to compute in one
dimension, but challenging in higher
dimensions

Outlier/Novelty Detection Algorithms
Time series methods
Machine learning approaches
Local Outlier Factor
Random Isolation Forest
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Local Outlier Factor (LOF)

dimension 2
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» Data points
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ldentifying Xenon Anomalies in Measurements

Anomalies can occur in multiple dimensions

One or more Xe isotopes
One or more IMS stations

Quantile Scores

Empirical and easy to compute in one
dimension, but challenging in higher

dimensions

Outlier/Novelty Detection Algorithms

Time series methods

Machine learning approaches

Local Outlier Factor
Random Isolation Forest
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Xe133 (log10(mBg/m?3))

LOF applied to Xe-133 and
Xe-133m at RN63 for 2014
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ldentifying Anomalies With Measurements & Atmospheric Models
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» Both models tend to underpredict Xe-133 during this period.
» A case of low emissions or a bias in the atmospheric models?

« There was an elevated collection on 14 July at the 97" percentile.
« FLEXPART matches the elevation, HYSPLIT does not.

* Is the elevated collection an anomaly of interest?
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ldentifying Anomalies With Measurements & Atmospheric Models

Regression methods can be used to combine ensembles of models, correct for
model biases and errors, and provide predictions of IMS collections with uncertainty.

{ PN it \
SR F(ﬁﬁ, FfE%EART)

INTERNATIONAL & AR Resources Lag
MONITORING SYSTEM

Yius = F(Hysplit,, Hysplit,, ..., Flexparty, Flexpart,, ...)

\_ J

Train on data for previous periods = Apply to collections of interest

Other predictors can be incorporated, like collections from different IMS
stations, environmental variables, categorization levels, etc.
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ldentifying Anomalies With Measurements & Atmospheric Models

_ _ Regression Inputs/Targets Regression Predictions
Ba‘yeSIan Rldge [ Y AN (N (N Ms | T e IMS
Regression for oy — G
Xe-133 at RN63 S
Robust to outliers, % g p o= A IR
easy to train, and Z
provides uncertainty -
estimates. | ‘ |
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Elevated collection on o e IE T | e IE
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the regression 2
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Injected signal on 19- = 7 - ' -
21 July is detected as =
an anomaly. —
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ldentifying the Origin of Anomalies
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Backwards Modeling — |

* Field of Regard (FOR) — I
» Possible Source Region (PSR)

Probablllstlc Methods —— y
3-day multi-model field of regard for JPX38 for collection

Forensic Radionuclide Event Analysis and for sample ID 2862643 using Web-Grape
Reconstruction Tool (FREAR)

 Eslinger’s likelihood scores \

v @ Medical
Facilities

: F FREAR @& 2 s |3
« Machine Learning Approach i e e e e
o Forward model runs are used to create By .
synthetic detections/non-detections for W BT
training data and testing. x (B [maum o
o Once trained, millions of alternate source —— ety
locations can be quickly evaluated. >
o Previously presented at WOSMIP and INGE. Screenshot of EREAR in Gitlah = =+« = o
and test results.
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ldentifying the Origin of Anomalies

60

Machine Learning Example

Values to Generate Synthetic Observations
s04 WL O S il Latitude Longitude Start Hours Duration Hours Amount
Prior Area of Possible
Locations
38.1336 132 8962 654873 3.0234 896.9242
40
Machine
Forward Learnin
- Atmospheric Backwar dg
Simulation
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ldentifying the Origin of Anomalies

Machine Learning Example
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ldentifying the Origin of Anomalies
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Machine Learning Example

T
23,871 344238 4977

lat
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len

Values to Generate Synthetic Observations
Latitude Longitude Start Hours Duration Hours Amount
38.1336 132.8962 65.4873 3.0234 596.9242
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Summary

= Xenon isotopes used for nuclear monitoring are highly variable in space and time due to
— changes in weather.
— the presence of many, widely distributed background industrial sources.

= Advanced methods using atmospheric modeling and statistical analysis are needed to
— identify xenon anomalies of interest.
— attribute the anomalies to background sources or nuclear testing.
— determine the origin of detections.

= Through a collaborative effort, we
— ran multiple atmospheric models to simulate xenon signals across the global IMS network in 2014.
— developed and tested outlier and novelty detection methods using quantile approaches and unsupervised
machine learning algorithms.
— used supervised Bayesian regression algorithms to combine multi-model predictions and IMS collections
for detecting anomalies with uncertainty.
— applied probabilistic algorithms to locate the origin of suspected anomalies.
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