

WOSMIP IX

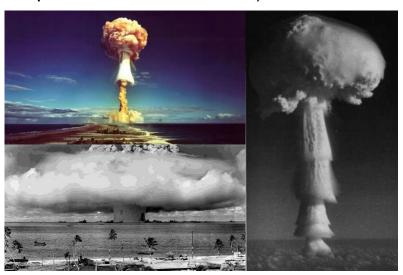
Richard Britton, Guillaume Beziat IMS Division, CTBTO

Santiago, Chile December 4-7th 2023

OVERVIEW

- The Comprehensive Nuclear-Test-Ban Treaty (CTBT) bans nuclear explosions by everyone, everywhere: above ground, under water and underground
- The treaty opened for signature in 1996, currently signed by 187 states
- Part of a wider global non-proliferation and disarmament regime

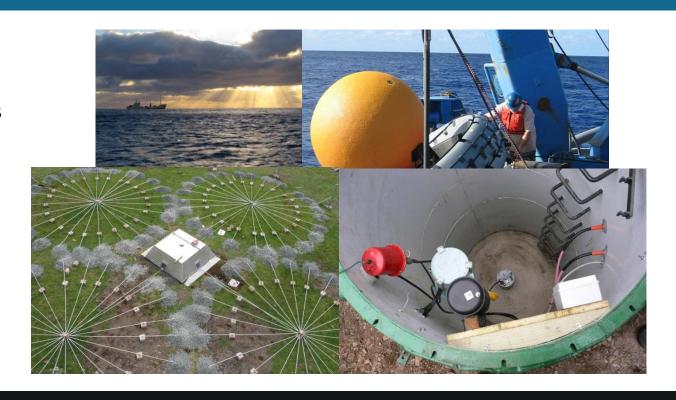
MISSION


- The CTBTO exists to prepare for the Treaty's entry into force. It has two main tasks:
 - Promoting universal recognition of the Treaty
 - Building up the verification regime to ensure no nuclear explosion can go undetected

HOW?

- The International Monitoring System (also International Data Centre, and On-Site

Inspection, see other talks)



IMS Stations

- 337 dedicated facilities
- 321 monitoring stations
- 16 laboratories

IMS Technologies

- Hydroacoustic
- Seismic
- Infrasound
- Radionuclide

IMS Stations

- 337 dedicated facilities
- 321 monitoring stations
- 16 laboratories

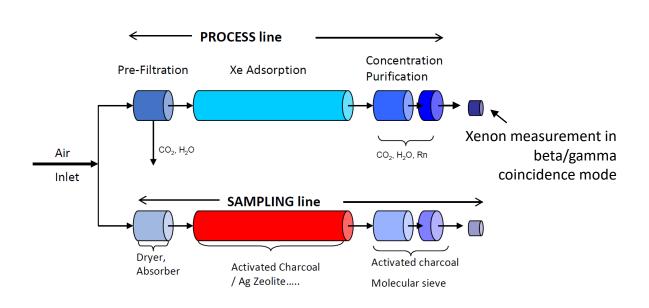

IMS Technologies

- Hydroacoustic
- Seismic
- Infrasound
- Radionuclide

IMS Technologies (Radionuclide)

- Particulate Monitoring
 - Manual and Automated systems
 - One sample per day
 - μBq.m⁻³ (10⁻⁶) detection limits
- Noble Gas (NG) Monitoring
 - All systems fully automated
 - Multiple NG samples per day
 - mBq.m⁻³ (10⁻³) detection limits
- 24/7 monitoring, 80 station network design
 - 73 P & 26 NG stations currently certified

Detection Systems


(Next-generation) Xenon Systems in the IMS

CTBT/PC/II/1/Add.2 Page 49

Characteristics	Minimum requirements		
Air flow	$0.4 \text{ m}^3/\text{h}$		
Total volume of sample	10 m ³		
Collection time	≤ 24 h		
Measurement time	≤ 24 h		
Time before reporting	≤ 48 h		
Reporting frequency	daily		
Isotopes measured	^{131m} Xe, ^{133m} Xe, ^{133m} Xe, ^{135m} Xe		
	beta-gamma coincidence		
Measurement mode 23	or		
	high resolution gamma spectrometry		
Minimum Detectable Concentration 24	1 mBq/m³ for ¹³³ Xe		
State of health	status data transmitted to IDC		
Communication	two-way		
Data availability ²⁵	95 %		
Down time ²⁵	≤ 7 consecutive days		
	≤ 15 days annually		

(Next-generation) Xenon Systems in the IMS

(Next-generation) Xenon Systems in the IMS

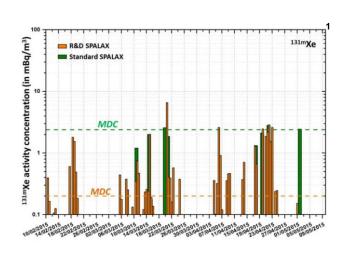
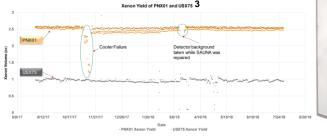



Table 1 2

Average minimum detectable concentrations in mBq/m³ for the SAUNA II and SAUNA III systems in Stockholm 2017–2019.

	SAUNA II	SAUNA III	SAUNA III no GASBK(*)
Air volume (m ³)	16	44	43
Xenon volume (sccm)	1.0	2.7	2.7
MDC ¹³³ Xe (mBq/m ³)	0.43	0.15	0.07
MDC ^{131m} Xe (mBq/m ³)	0.27	0.15	0.07
MDC ^{133m} Xe (mBq/m ³)	0.23	0.15	0.08
MDC ¹³⁵ Xe (mBq/m ³)	0.87	0.36	0.24

(*) Data from a nine-month period in 2020–2021 when the system was operated in the gas-background free-mode.

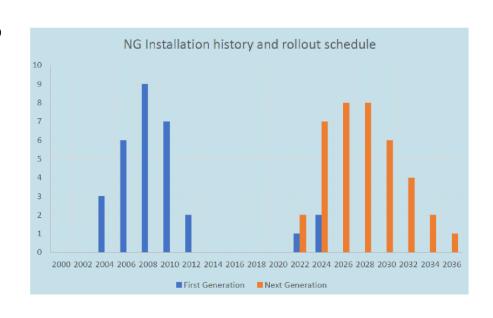

^{1.} A. Cagniant, S. Topin, G. Le Petit, P. Gross, O. Delaune, T. Philippe, G. Douysset, SPALAX NG: A breakthrough in radioxenon field measurement, ARI 134 (2018) https://doi.org/10.1016/j.apradiso.2017.06.042

^{2.} M. Aldener, A. Axelsson, T. Fritioff, J. Kastlander, A. Ringbom, SAUNA III - The next generation noble gas system for verification of nuclear explosions, JER 262 (2023) https://doi.org/10.1016/j.jenvrad.2023.107159

^{3.} J. Hayes, Xenon International, WOSMIP Remote (2020), https://www.wosmip.org/sites/default/files/2020-07/Xenon_International_Hayes.pdf

(Next-generation) Xenon Systems in the IMS

^{1.} A. Cagniant, S. Topin, G. Le Petit, P. Gross, O. Delaune, T. Philippe, G. Douysset, SPALAX NG: A breakthrough in radioxenon field measurement, ARI 134 (2018) https://doi.org/10.1016/j.apradiso.2017.06.042


^{2.} M. Aldener, A. Axelsson, T. Fritioff, J. Kastlander, A. Ringbom, SAUNA III - The next generation noble gas system for verification of nuclear explosions, JER 262 (2023) https://doi.org/10.1016/j.jenvrad.2023.

^{3.} J. Hayes, Xenon International, WOSMIP Remote (2020), https://www.wosmip.org/sites/default/files/2020-07/Xenon_International_Hayes.pd

Rollout Plan

- An older plot, but illustrative of the systems likely to come on-line in the next 10 years
- Deployment will be a mixture of system types, including Xenon International, SPALAX-NG, SAUNA III and MIKS
- Total station coverage will also increase from 26 NG systems towards 40
- Eventual IMS configuration could approach 80 NG stations
- Station locations and numbers are limited by the Treaty

Summary

- The International Monitoring System is growing
- The number of deployed xenon systems will increase
- The sensitivity and throughput of monitoring stations will increase

But

- There are many emitters, often clustered (on IMS scales)
- More emitters are coming online
- A complex and dynamic Radioxenon background will continue to dilute and mask releases from Treaty violations

Thank you!

Vienna International Centre, PO Box 1200 1400 Vienna, Austria CTBTO.ORG