

XENAH: Xenon and Environmental Nuclide Analysis at Hartlepool

M.A. Goodwin, D.L. Chester, G. Galvin (AWE)
B. Milbrath, J. Friese, T.W. Bowyer, L. Lidey, J.C. Hayes, P.W. Eslinger, M. Mayer, D. Keller, R. Sarathi, J.L. Burnett (PNNL)
A. Petts, M. Arnold (EDF Energy UK)
A. Ringbom, M. Aldener, T. Fritioff, J. Kastlander, S. Liljegren (FOI)
S. Leadbetter (Met Office)

Also supported by Science & Technology Facilities Council (STFC), University of Durham and Leeds University.

Workshop on Man-made Isotope Production (WOSMIP), Santiago, Chile, December 2023

Matthew.Goodwin@awe.co.uk

An overview of the XENAH project and a deep-dive into some of the results

Background

Radionuclides are detected on the International Monitoring System every day.

Fig 1. Shows the radionuclides detected on the IMS particulate network during 2021, as reported by IDC analysts.

Many of the particulate activation and fission products detected originate from Nuclear Power Plants (NPPs). This is also true for isotopes of radioxenon.

As a community, we are thirsty for more knowledge on the impact of NPPs. The civil nuclear science community (dominated by safety and regulatory work) and the nuclear test monitoring community can benefit from interactions – an opportunity to compare apples with apples. XENAH is one such opportunity to learn about the impact of a NPP.

Hartlepool Nuclear Power Station

Figure 2. Location of Hartlepool Nuclear Power Station in the North of England.

Advanced Gas-Cooled Reactor (AGR)

Hartlepool NPP has two Advanced Gas-cooled Reactors (AGR) designed in the 1960s, built in the 1970s and operational from the 1980s to present.

- Active core diameter: 9.3 m x 8.2 m high
- Total core diameter: 11.9 m x 12.7 m high
- 81 boronated steel control rod channels
- 324 fuel channels are eight stacked fuel elements, each containing 36 clustered fuel pins arranged in concentric rings of 18, 12 and 6 pins within a graphite sleeve
- The stainless-steel-cladded fuel pins are approximately 1 m in length with a diameter of 14.48 mm and contain stacked ceramic UO₂ pellets of either 3.2% or 3.78% ²³⁵U. The total core inventory of uranium is approximately 130 tonnes.

The primary coolant (CO₂) is driven around the core by eight gas circulators which each have a constant-speed motor running at 3000 rpm, resulting in a total gas mass flow of 3600 kg s⁻¹. In full-power operation, the CO₂ operates at 39 bar with temperatures at the bottom of the active core around 270 \circ C and at the top 650 \circ C

Document reference: AWE/NNSP/23/B/5872

Figure 3. AGR schematic

In-core monitoring

Installed at Hartlepool is a Gaseous Activity Monitor (GAM) system – a custom-designed HPGe-based measurement system for continuous monitoring of in-core activities using y-ray spectroscopy. Fig. 4 shows a spectrum obtained from one of the measurements, with the identified radionuclides labelled. This system was already present at the power station.

Document reference: AWE/NNSP/23/B/5872

UK Ministry of Defence © Crown Owned Copyright 2023/AWE

XENAH

Figure 5. XENAH collaboration visit to Hartlepool NPP

In January 2023, AWE organised a meeting for the XENAH collaboration, including representatives from AWE, PNNL, EDF, FOI, NNSA, STFC & Met Office.

The group visited EDF Hartlepool, toured the reactor building, including the GAM system (and recently installed STAX¹ system), as well as a visit to Boulby Underground Laboratory, where the AWE SAUNA Q_B^2 was installed (above-ground!).

¹ STAX: Source Term Analysis of Xenon – PNNLled project installing stack-monitoring systems into nuclear facilities
²SAUNA Q_B: A radioxenon sensor

Owned Copyright 2023/AWE

UK Ministry of Defence © Crown

XENAH: 3 Tranches of Work

Sample Measurements	Stack Monitoring	Radioxenon Sampling
Charcoal and filter paper	HPGe stack monitor	Three SAUNA Q_B systems
line filtration systems at	operating through 2022	Instaned 25-95 km away
Hartlepool		Systems operating during
	Measure multiple	2022 and part of 2023
HPGe measurement	blowdowns (refuelling on	
systems at AWE and PNNL	both reactors)	Measurements of radioxenon sampled from
	Quantify radioxenon	the atmosphere in 12-hour
Ultra-sensitive gamma	isotopes of interest at	sampling periods
spectroscopy	source. Data used to	
	simulations	

Owned Copyright 2023/AWE

UK Ministry of Defence © Crown

XENAH Process Sample Measurements

- Charcoal maypack and paper filters used at Hartlepool for monitoring environmental emissions have been prepared and shipped to AWE and PNNL for further γ-spectroscopy analysis.
- More sensitive measurements have been completed and other radionuclides identified. The first two rounds of measurements (2020 and 2021) were completed following a few months delay between reactor blow-down and measurement. The third round of measurements aims to have the samples shipped to AWE for measurement soon after the blow-down, with the aim of detecting shorter-lived radionuclides.

GCMF - JUN- 2020 -ANT-P-2070 E : LNO

Figure 6. Charcoal samples as arrived (left) and pushed into a container for counting (middle). Filter paper samples (right) prepared for measurements using small plastic vial containers.

ranchel

XENAH STAX system

The STAX system used at Hartlepool is a modified NGM-2000 system, produced by VF Nuclear. It utilises a HPGe detector. The only modification of the system from the base unit is the continuous airflow through the measurement cell.

Gas from the stack is pumped though the cell in front of the detector, and a spectrum is acquired every 15 minutes.

Figure 7. NGM-2000 stack-monitoring system (left) and installed at EDF Hartlepool (right)

SAUNA Q_R Overview

Figure 8. Photograph of the AWE SAUNA Q_B during XENAH deploym

The SAUNA Q_B operated between 2022-03 and 2023-02. Custom software was deployed to remotely monitor the system and retrieve data. For the XENAH work, analysis is completed by FOI using OpenSpex (Beta-gamma matrix method).

SAUNA Q_B measurements

STAX data + ATM + SAUNA Q_B data

Figure 11. (Left) simulated release from Hartlepool using NAME - Met Office ATM dispersion code. (right) Comparison of observed and simulated detections. STAX data was used to adjust the emission profile.

UK Ministry of Defence © Crown Owned Copyright 2023/AWE

STAX data and ATM simulations suggest this plume is from IRE, which precedes the blowdown and subsequent detections.

Charcoal/Filter measurements

AWE

Ag-110m was detected in some of the samples

Figure 12. γ -ray spectrum from measurement of a charcoal sample at PNNL. The sample contained ^{108m}Ag, ^{110m}Ag, ¹³⁷Cs, ⁵⁴Mn and ⁶⁰Co.

Summary of detected radionuclides in "fresh" charcoal samples

Other isotopes

UK Ministry of Defence © Crown Owned Copyright 2023/AWE

Radioxenon isotopes

		•		
Isotope	Production Mode	Isotope	Production Mode	
Xe-133	Fission	Cs-137	Fission	
Xe-135	Fission	Co-60	Activation	
Xe-131m	Fission	Se-75	Activation	
Xe-133m	Fission			
Xe-125	Activation			
Xe-127	Activation			
Xe-129m	Activation			
	Isotope Xe-133 Xe-135 Xe-131m Xe-133m Xe-125 Xe-127 Xe-129m	IsotopeProduction ModeXe-133FissionXe-135FissionXe-131mFissionXe-133mFissionXe-125ActivationXe-127ActivationXe-129mActivation	IsotopeProduction ModeIsotopeXe-133FissionCs-137Xe-135FissionCo-60Xe-131mFissionSe-75Xe-133mFissionSe-75Xe-125ActivationXe-127ActivationXe-129mActivation	

Stack monitoring measurements

Stack measurements

Figure 13. Stack measurement using a high-purity germanium detector, showing identified gamma lines

Figure from Andrew Petts

STAX Analysis Comparison

Figure 14. Analysis results comparison using STAX data, Expert Re-analysis (15 min and 1 h) (PNNL/USL16) and GAM system results (In-core)

Figure from Judah Friese

Summary

- XENAH project has been active since 2020
- SAUNA Q_B array measurement campaign is now complete
- STAX system is still installed and operational
- More sample measurements are planned
- Analysis and write-ups are underway!
- Exciting conclusions to be drawn from the various measurements completed.
- We know a lot more about AGRs (and their impact) than we did before -
- Much of this may be applicable to Small Modular Reactors (SMRs)
- This is a useful experiment model, which could be applied to other cooperating nuclear facilities

Emissions from a welloperating AGR are binary – they are either emitting or they are not. As such, they are not a good fit for the model of a daily average emission magnitude.

Questions?

Thank you to:

Support from Met Office (UK ATM modelling) and Q_B hosts: STFC Boulby, U. Durham, U. Leeds (NCAS).

Matthew.Goodwin@awe.co.uk

UK Ministry of Defence © Crown Owned Copyright 2023/AWE

Extra Slides

Se-75 confirmed in charcoal samples with coincidence measurement

Strong g-g coincidence signature 264 keV + 136 keV

. 136 keV Energy gate

264 keV Energy gate

Worldwide reactors

Reactor Type Main Countries		Number	Fuel	Coolant	Moderator
Pressurised	USA, France, Japan,	306	Enriched UO ₂	Water	Water
Water Reactor	Russia, China, South				
(PWR)	Korea				
Boiling Water	USA, Japan, Sweden	60	Enriched UO ₂	Water	Water
Reactor (BWR)					
Pressurised	Canada, India	47	Natural UO ₂	Heavy water	Heavy Water
Heavy Water					
Reactor					
(PHWR)					
Light Water	Russia	11	Enriched UO ₂	Water	Graphite
Graphite					-
Reactor					
(LWGR)					
Advanced Gas-	UK	8	Natural U	CO ₂	Graphite
cooled Reactor			(metal),		-
(AGR)			enriched UO ₂		
Fast Neutron	Russia	2	PuO ₂ and UO ₂	Liquid sodium	None
Reactor (FNR)				-	
High-	China	1	Enriched UO ₂	Helium	Graphite
Temperature					-
Gas-cooled					
Reactor					
(HTGR)					

Information from World Nuclear Association www.world-nuclear.org

