

National Nuclear Security Administration (NNSA)

Defense Nuclear Nonproliferation (DNN)

Office of Material Management and Minimization (M3)

Molybdenum-99 Program Update

Max Postman

Overview

- Program mission
- Conversions from highly enriched uranium (HEU) to low enriched uranium (LEU)
- Support for emissions monitoring and control
- Updates on recent Mo-99 developments
- National laboratory technical accomplishments

MATERIAL MANAGEMENT AND MINIMIZATION CONVERT, REMOVE, DISPOSE

M3: What We Face

The detonation of a crude nuclear bomb would have catastrophic consequences, potentially including:

- Significant fatalities and casualties;
- Extensive infrastructure damage and radioactive contamination;
- Economic losses worth hundreds of billions of dollars;
- **ES**
- Irreparable psychological damage and fear across the globe.

M3: Our Response

- Minimize the risk

of hostile states and non-state actors acquiring nuclear material for an improvised nuclear device

by working with partners

to eliminate the need for, presence of, or production of weapons-usable nuclear material.

M3: Our Opportunity

Keep the United States

at the forefront of civil nuclear industry and nonproliferation leadership

by ensuring our industry and allies

have access to non-weapons-usable nuclear material for scientific application and power production (including High-Assay Low Enriched Uranium or "HALEU")

Highly Enriched Uranium (HEU) Minimization with Mo-99

All Major International Producers Now Use LEU Targets!

*ANSTO (Australia) has always produced Mo-99 with LEU targets

Support for Emissions Monitoring and Control

All DOE/NNSA cooperative agreement partners that use fission-based processes are planning to participate in the STAX program

Developments on New Mo-99 Production

- U.S. Developments
 - NorthStar Medical Radioisotopes indefinitely suspended Mo-99 production.
 - SHINE Technologies continued work on new Mo-99 production facility, reaching milestones on Nuclear Regulatory Commission licensing, fusion accelerator testing, and equipment procurement and qualification.
 - Niowave conducted pre-application meetings with U.S. Nuclear Regulatory Commission.
- International Developments
 - Reactor outage resulted in short-duration Mo-99 shortages in late 2022.
 - BWXT installed and commissioned Mo-99 production equipment at Darlington Nuclear Generating Station.
 - OECD/NEA released new Mo-99 supply and demand report.

National Laboratory Technical Accomplishments

Argonne National Lab demonstrated changes to an existing process for separating Mo-99 from LEU targets to enable larger batch sizes

Pacific Northwest National

Lab developed and shipped for testing a new tool to capture radioxenon emissions from Mo-99 production

Los Alamos National Lab designed, built, and operated a system for laserbased measurements of helium cooling gas velocity for accelerator-based Mo-99 production

Savannah River National Lab demonstrated technology for removing high-activity fission products from Mo-99 waste

Oak Ridge National Lab published a report on additive manufacturing ("3D printing") of Mo-100 targets for acceleratorbased Mo-99 production

Y-12 National Security Complex tested and demonstrated a process for loading uranium fuel rods for Mo-99 production