

Retention of Molten Salt Reactor Off-Gas

Clayton Hudson, Kevin Guerra, and Derek Haas

Workshop on Sources of Man-made Isotope Production December 2023 WOSMIP Santiago, Chile

Generation IV Reactor Design Groups

Image Credit:

A Technology Roadmap for Generation IV Nuclear Energy Systems. Issued by the US DOE Nuclear Energy Advisory Committee and the Generation IV International Forum. (Dec 2002)

$$P = \frac{E}{t} \qquad 100 \text{ MW} = 6.2 \times 10^{20} \frac{MeV}{s} = 2.7 \times 10^{23} \frac{fissions}{d}$$

Assume Cumulative Fission Yield for Xe-133 = 5%

$$2.7 \times 10^{23} \frac{fissions}{d} = 1.3 \times 10^{22} \frac{atoms}{d} = 2.2 \times 10^{16} \frac{Bq}{d}$$
per 100 MW

Emissions could be 10⁻⁶-100% of inventory depending on retention tech

Identification of Potential Waste Processing and Waste Form Options for Molten Salt Reactors

Figure 3-5. Schematic of the overall off-gas system for a commercial MSR based on the MSRE experience. All of the components shown, except the molten hydroxide packed-bed scrubber, are commercially available.

kperience. Iy available. U.S. Department of Energy MSR Campaign B.J. Riley,^(a) J. McFarlane,^(b) G.D. DelCul,^(b) J.D. Vienna,^(a) C.I. Contescu,^(b) L.M. Hay,^(a) A.V. Savino,^(a) H.E. Adkins,^(a) ^(a)Pacific Northwest National Laboratory ^(b)Oak Ridge National Laboratory August 15, 2018 NTRD-MSR-2018-000379, PNNL-27723

Approved for public release. Distribution is unlimited.

Prepared for

Identification of Potential Waste Processing and Waste Form Options for <u>Molten Salt Reactors</u>

Packed-bed molten Activated charcoal hydroxide scrubber value) Simulated Cleanup system **Experimental Testing of Cryogenic** NG Surrogates created with UT **Distillation using Liquid He TRIGA Reactor** ⁸⁵Kr Ar Prepared for Figure 3-5. Schematic of the overall off-gas system for a commercial MSR based on the MSRE experience. U.S. Department of Energy All of the components shown, except the molten hydroxide packed-bed scrubber, are commercially available. MSR Campaign B.J. Rilev,(a) J. McFarlane,(b) G.D. DelCul,^(b) J.D. Vienna,^(a) C.I. Contescu,^(b) L.M. Hay,^(a) A.V. Savino,^(a) H.E. Adkins.(a) ^(a)Pacific Northwest National Laboratory

(b) Oak Ridge National Laboratory August 15, 2018

NTRD-MSR-2018-000379, PNNL-27723

Calculation of NG Concentration

Calculation of NG Concentration Position

Values are placeholders for creating solving order only. It is assumed ½ of inventory is retained, other half is transferred to next compartment. Letters proceeding atom counts (I.e. A. 50 and B. 25) indicate the order of solving.

UT Cryogenic Irradiation System Overview Heat

Exchanger

Irradiation Cannister

Gas Transfer System

Gas Unloading System

Heat Transfer System

Irradiation Cannister

Gas Transfer System

Beam Port Shielding

Planned Noble Gases for Experiment

Ar-41

- T_{1/2}= 109.61 min
- Relatively inexpensive
- Proof of concept
- Easily accessible

Kr-87/88

- T_{1/2}= 76.3 min/2.85 hrs
- Moderately
 expensive
- Produced during MSRR operation

Xe-135

- T_{1/2}= 9.14 hrs
- Third option for completeness' sake
- Expensive
- Produced during MSRR operation

Goals of the experiment

- Repurpose cryogenic irradiation facility to MSRR off-gas retention test
- Separate and capture noble gas mixture, verifying quantity captured via activity measurement
- Demonstrate the efficacy of cryogenic distillation for off-gas retention in the MSRR

Potential Future Deployment at MSRR

Following proof of concept, deployment of a full cryogenic distillation system at MSRR by 2026

Collect off-gases created during MSRR operation for other uses