

Welcome

XENAH: Current status, results and challenges faced

Dr Andrew Petts, EDF, on behalf of XENAH collaboration

Hartlepool Power Station Overview

Advanced Gas-cooled Reactor (AGR) design and operation

Hartlepool Power Station – Advanced Gas-cooled Reactor (AGR)

- The Station operates 2 Advanced Gas-cooled Reactors (AGRs)
- Has been on-line since 1983 and is currently licenced to April 2026*
- Each generates ~ 600 MW(e), runs at ~1570 MW(th)
- AGR is a graphite-moderated reactor, an evolution of the MAGNOX reactors
- Utilises low-enrichment uranium fuel, 3.2% 3.78%
- Pressurised CO₂ as primary coolant

Hartlepool power station, pile cap with fuelling machine in background

Hartlepool power station, located on the North-East coast of England

Cartoon schematic of a typical AGR

Advanced Gas-cooled Reactor (AGR) Design

Fuel design	
Material	UO ₂ , 3.2 – 3.78% enriched, 130 tonnes per reactor
Disposition	36 pin cluster, graphite sleeve. 8 elements per fuel channel
Cladding	Stainless steel, 0.37mm thick
Average discharge irradiation	30 GWd/tU

Reactor	
Moderator	Graphite
Primary Coolant	CO ₂ @ 41 bar, 3623 kg/s
Number of Fuel Channels	324 with 460mm pitch
Number of Control Rods	81
Active Core Dimensions	9.3m x 8.2m
Mean Temps	T1: 286 °C, T2 648 °C

Pressure vessel	
Material	Pre-stressed concrete with stainless steel inner liner
Dimensions (Internal)	18.3m x 13.1m
Dimensions (External)	29.3m x 25.9m

Schematic of a typical AGR fuel element (left) and overhead view of graphite core

Hartlepool power station operation

- Reactors operate at full load and are constant do not change to match grid requirements
- Reactor shuts down approx. every 4-5 months for off-load, depressurised batch refuelling
- Once shutdown, reactor is depressurised over a 24 hour period releasing primary gas coolant though a filtered route. Exhausted gas is routinely monitored for environmental regulation compliance.
- Circa 20 channels from 324 are refuelled during each outage
- Outages last ~14 days, after which load is steadily increased to ~1570 MW(th)
- Usually have 5 refuelling outages across the 2 reactors in a year. Operator avoids having both reactors shut down in coincidence

Journey of the nuclear fuel

- Fuel spends ~ 8 years in the reactor
- Once out of the reactor, fuel must be below 16 kW before it can be dismantled at the IFDF – this typically takes around 2 weeks, during which the fuel is housed in special 'buffer stores'
- Once below 16 kW, fuel is dismantled at the IFDF and sent to the cooling ponds
- Fuel must cool to < 12 kW decay heat and spend at least 90 days within the ponds
- Fuel elements are placed in a 'flask' for transport
- Flask with irradiated fuel is transported by train to Sellafield for reprocessing and longterm storage

XENAH: Xenon Environmental Nuclide Analysis at Hartlepool

Project overview, results and current status

XENAH - Overview

The Xenon Environmental Nuclide Analysis at Hartlepool (XENAH) collaboration involving scientists from the U.K., U.S and Sweden are performing measurements at Hartlepool Power Station in the North-East of England using a suite of monitoring techniques to better understand radionuclide emissions from a nuclear power reactor and how these might affect the IMS. The XENAH collaboration will perform these measurements with strong cooperation of the reactor operator, EDF Energy.

XENAH collaboration aims to undertake three distinct measurement programs:

- Reactor stack emission monitoring (source)
- Remote detections after atmospheric transport
- Sample measurements and in-core coolant analysis

The aim being to better understand radionuclide emissions from a nuclear power reactor and how these might affect the IMS used for CTBT monitoring.

Collaborators: Atomic Weapons Establishment (AWE), UK, EDF, UK Pacific North-west National Laboratory (PNNL), USA, Swedish Defence Agency (FOI), Sweden, Met Office, UK, STFC Boulby, UK, Durham University, UK

Reactor stack monitoring - STAX

STAX system installed at the R6 tower in Hartlepool Power Station on the main blowdown route

30% HPGe detector MDC for ¹³³Xe: 270 Bq/m³ Flow through system: 1.25 m³/hr Continuous monitoring (15 minute acquisitions, looped) System installed at R6 tower on the main blowdown route to monitor emissions just prior to refueling.

In-core measurements and samples

Gaseous Activity Monitoring (GAM) system at Hartlepool power station

Gaseous Activity Monitoring (GAM) measures in-core coolant activity to assess fuel condition ICS cooled, Ortec Ptype 40% HPGe detector feeding Ortec DSPEC 50 MCA for isotopic analysis Used to monitor for fuel performance – particularly during blowdowns

ATM Q_B sensitivity calculations, using emissions from Hartlepool reactor. Simulations performed using HYSPLIT with GFS 0.25° met data

Annual

XENAH collaboration standing on top of the Hartlepool Reactor 1 pile cap

Remote measurements after ATM

Intakes atmospheric sample Sample time of 12 hours (includes gas conditioning) Qb consists of single beta-gamma detector consisting of 18ml plastic scintillator detector inside a 4 inch Nal crystal ¹³³Xe MDC ~ 0.4 mBg/m³

XENAH - Challenges

Working with a highly-regulated facility can be a challenge. Nuclear operators are required to comply with various regulations and be mindful of what information may be either commercially sensitive or have security implications. The default position is often a conservative one and so there may be an unease in sharing information or resources. These challenges can be overcome!

Reactor stack monitoring - STAX

Challenges:

- 1) Logistics getting a sizeable piece of equipment onto a nuclear site
- 2) Potential interactions with existing systems
- 3) Security implications
- 4) Data sharing is it Sensitive Nuclear Information?
- 5) Resourcing installation of non-essential equipment

Resolutions:

- 1) Avoid equipment with in-built radioactive sources advanced warning
- 2) STAX was kept "outside of the system". It was not classed as test equipment and temporary and therefore subject to less stringent installation criteria. The system was also shown not to interact with other systems. This needed to be justified via an "Engineering Change" with particular focus on demonstrating that the claimed monitoring system for environmental release would not be affected by the installation.
- Security a big concern. Keeping the system "islanded" ensured that it did not interact with any plant network and so was not subject to additional justification. Having the system interact with plant network would have required significant qualification.
- 4) Early engagement. Ask ourselves could this information be used by "threat actors" to cause significant harm? The answer needs to be "No"! It also helps to identify similar information that is already within the public domain
- 5) Engage interested parties and pull in favours! Resource can be a challenge particularly when the work is not required for Compliance or for Commercial benefit. Project needs to peak interest to secure discretionary effort.

In-core measurements and samples

Challenges:

- Logistics sending radioactive material away from site difficult particular overseas. Packages needed to be classified as "Excepted" packages under Dangerous goods regs. Receivers need evidence of a permit
- 2) Regulatory implications site has process for retaining samples for 3 months
- 3) Resourcing of non-essential work

Resolutions:

- Receiver needs to be able to provide evidence of a "Cat 5" permit that allows them to receive radioactive materials. Also settled on shipping within the UK to avoid further complications about shipping material abroad
- Engaged regulator to ensure they were comfortable with samples being sent and potential not being retrievable. Asked for clarification on exactly what needs to be retained and for how long.
- Engage interested parties and pull in favours! Resource can be a challenge particularly when the work is not required for Compliance or for Commercial benefit. Project needs to peak interest to secure discretionary effort.

Remote measurements after ATM

Challenges:

- 1) Logistics Sending equipment to others for loan UK tax implications
- 2) Information sharing

Resolutions:

2) Ensure that information shared is retrospective and based on that which is already publically available.

Environmental samples

Environmental measurements

- A portion of stack gas is continuously tapped and passed through maypack filters. At each discharge point. These are exchanged every 2 3 days and analysed on-site to demonstrate compliance against environmental discharge limits
- Maypack charcoal and paper filters provided from various locations at Hartlepool where fuel is handled and gaseous
 effluent discharged (pond stack, R6 and R12 blowdown Stacks, GCMF). Charcoal samples from June 2020 and June
 2021 were provided. These were beyond the 3 month retention period* when shipped
- Samples were prepped to consistent geometry by packing charcoal into 200ml plastic sample pots. Each sample contained approx. 39g charcoal.
- Samples were measured at Boulby underground laboratory and the Shallow Underground Laboratory at PNNL
- Laboratories able to perform ultra-sensitive gamma-ray spectroscopy.
- ARGO at PNNL combines low background, cosmic veto, Compton suppression and coincidence functionality

ARGO system at PNNL SUL

Preliminary results: Environmental samples

Isotope	Production Type	Half-life	Filter detections	Charcoal detections	IMS detections
¹³⁷ Cs	Fission	30.1 a	62 (100)	109 (100)	7739 (31.3)
⁵⁸ Co	Activation	70.9 d	2 (3.23)	18 (16.5)	17 (0.069)
⁶⁰ Co	Activation	5.3 a	41 (66.1)	91 (83.5)	1044 (4.22)
⁵⁴ Mn	Activation	312 d	48 (77.4)	88 (80.7)	62 (0.25)
¹⁰⁸ Ag	Activation	438 a	0 (0)	1 (0.92)	NR
110mAg	Activation	250 d	0 (0)	1 (0.92)	NR
⁵¹ Cr	Activation	27.7 d	2 (3.23)	4 (3.67)	12 (0.049)
⁵⁷ Co	Activation	272 d	2 (3.23)	0 (0)	2 (0.008)
⁵⁹ Fe	Activation	44.5 d	1 (1.61)	4 (3.67)	17 (0.069)
⁷⁵ Se	Activation	120 d	1 (1.61)	2 (1.83)	NRÌ
⁶⁵ Zn	Activation	244 d	1 (1.61)	13 (11.9)	17 (0.069)
⁴⁶ Sc	Activation	83.8 d	0 (0)	11 (10.1)	4 (0.016)

Time series plots showing measured activities of charcoal samples collected in June 2020 (left) and September 2021 (right) for the three most commonly observed isotopes at four facilities within the Hartlepool NPP.

Preliminary results: Environmental samples

Time series plots showing measured activities of filter samples collected in June 2020 (left) and September 2021 (right) for the three most commonly observed isotopes at four facilities within the Hartlepool NPP.

Conclusions

- Prior to measurement at PNNL and AWE, each sample is measured using conventional gamma-spectrometry systems at EDF Energy for environmental compliance.
- The ultra-sensitive measurements have identified trace levels of fission and activation products, including ^{108m}Ag, ^{110m}Ag, ⁵¹Cr, ⁵⁴Mn, ⁵⁸Co, ⁶⁰Co, ⁹⁷Zr and ¹³⁷Cs. Some of these isotopes have not been recorded before in IMS data.
- Analysis focused on longer-lived radionuclides (e.g. ⁵⁴Mn, ⁵⁸Co, ⁶⁰Co, ¹³⁷Cs) at fuel handling locations. These isotopes occurred in a high proportion of the samples measured.
- Activation products have been attributed to the austenitic stainless steel of the fuel pins and reactor internals.
- Measurements reveal increases in radionuclide activities during fuel handling
- It is postulated that information from activation-product discharges could possibly infer if a facility is handling nuclear material.
- Paper submitted to PRA but rejected. Paper to be submitted to JER after revisions

Radio xenon measurements during blowdowns

STAX measurements

NGM-2000 System

- 30% HPGe detector
- MDC 270 Bq/m³
- Flow through system: 1.25 m³/hr
- Continuous monitoring
 (15 minute acquisitions, looped)

STAX system at R6 tower

- System aims to primarily measure radio xenon isotopes, but is sensitive to all gamma-emitting gaseous fission products
- Air extracted from stack flows through Marinelli. Measured concentration is adjusted by total stack flow.
- Stack flow peaks around 1400 m³/hr during blowdowns
- System installed at R6 tower (main blowdown route)

Blowdown route information

- In-core measurements
 - Gaseous Activity Monitoring (GAM) measures in-core coolant activity to assess fuel condition
 - 40% HPGe detector feeding MCA for isotopic analysis and NIM modules for analogue CCR indications and alarms
 - 1 hour acquisition, continuous flow of 1 litre/s
 - Used to monitor for fuel
 performance particularly during
 blowdowns

GAM system at Hartlepool NPP

- Bypass/blowdown filter remains in service during normal operation and blowdowns.
- Blowdown line is opened via G/8. All gas from reactor goes through bypass/blowdown filter and iodine absorption plant.
- From ~ 30 barg to ~ 5 barg, gas exits through Major blowdown stack. From 5 barg to 0.3 barg, gas exits via Minor blowdown stack

STAX monitor is installed on Major blowdown route at a tapping point within stack just prior to exit, post-filters. STAX gets mass flow data from flow meter installed within stack.

Pi blowdown flow data taken just prior to iodine absorption plant and measures flow to both major and minor blowdown routes. This data is used to scale in-core activity measurements to calculate release.

Preliminary results: Blowdown analysis

Typical spectrum obtained from a one-hour acquisition on the R1 GAM system whilst on-load at full power. Identified fission products and coolant activation products labelled.

Typical spectrum obtained from the STAX system during a reactor blowdown. Identified fission products and coolant activation products labelled.

Typical spectrum obtained from the STAX system during a reactor blowdown. Identified fission products and coolant activation products labelled.

Typical spectrum obtained from the STAX system during a reactor blowdown. Identified fission products and coolant activation products labelled.

Preliminary results: Blowdown analysis

Blowdown period	¹³³ Xe (Bq)	¹³⁵ Xe (Bq)	^{133m} Xe* (Bq)	131m Xe* (Bq)
R2 March 22	$14.6(5)x10^9$	$1.4(1) \mathrm{x10^9}$	1.3×10^{9}	8.0×10^{9}
R1 June 22	$11.3(4)x10^9$	$9.7(10) \times 10^8$	1.8×10^{9}	9.1×10^{9}
R2 September 22	$13.3(4)x10^9$	$7.8(7) \times 10^8$	1.2×10^{9}	5.3×10^{9}
R1 November 22	$10.9(5)x10^9$	$1.5(2) \times 10^9$	1.8×10^{9}	9.9×10^{9}
R2 February 23	$17.3(5)x10^9$	$2.2(1)x10^9$	1.3×10^{9}	8.0×10^{9}
R1 April 23	$13.0(5)x10^9$	$2.2(1)x10^9$	$1.2 x 10^9$	8.2×10^{9}
Annual estimate	$67(3)x10^9$	$21(2)x10^9$	$7.2 \mathrm{x} 10^{9}$	40×10^{9}

Calculated total discharge activities, in Bq, for the 4 IMS-relevant xenon isotopes. 133Xe and 135Xe discharge activities are based on measured in-core activity from the GAM system and effluent flow. Upper limits for 133mXe and 131mXe discharged activity during the blowdown periods have been estimate based on GAM system MDAs and are denoted with *

Conclusions

- In-core isotopic measurements are in very good agreement with measured emission activities
- During periods of release, around 10⁹ GBq of Xenon activity is released. Not continuous as previously assumed
- Likely that Kalinowksi et al. (JER 100, 2009) overestimate by an order of magnitude. Upper limit for Xenon release of ~130 GBq for Hartlepool NPP against an assumed batch release of 1010 GBq or 4560 GBq continuous release.
- Other AGRs may be assumed to have similar emission profiles to Hartlepool. MAGNOX reactor design will be similar also.
- · AGR emissions several orders of magnitude lower than MIPs and comparable with research reactors

Preliminary results: Blowdown ratio analysis

from Kalinowski et al, PAGEO 167, 2010

Results and conclusions

- When plotting data measured with STAX, GAM and from ACL samples as 3-isotope plots, AGR emissions lie to the right of the nuclear explosion discrimination line
- When the elusive ^{131m}Xe is included (measured in ACL charcoal samples) AGR emissions lie to the left
- Supports the conclusion that ^{131m}Xe detection is key to discriminating civil emissions from nuclear explosions

Paper to be submitted to PRA

Next steps...

- Continue to measure emissions during blowdowns using installed STAX system
- Continue analysis of ATM work and Qb array data
- Publish results
- Ship and measure 'fresh' samples of filtration media immediately after blowdown to measure short-lived isotopes, in particular iodine species.
- Analyse 5 years worth of in-core coolant activity data
- Bring other UK stations into collaboration Sizewell B PWR on board
- Secure Research Council funding to develop novel radiation detection capabilities for use in current and future reactors?

Thank You